节点文献

基于蚁群算法的物流配送多路径优化问题研究

Research of Multi-routing Problem Based on Ant Colony Algorithm

【作者】 沈弘毅

【导师】 左保河;

【作者基本信息】 华南理工大学 , 系统结构, 2010, 硕士

【摘要】 物流配送车辆路径优化,是物流系统优化中关键的一环。对物流配送车辆路线进行优化,可以提高经济效益、实现物流科学化。对配送车辆线路优化的理论与方法进行系统研究是物流集约化发展、构建综合物流系统、建立现代调度指挥系统、发展智能交通运输系统和开展电子商务的基础。物流配送车辆路径优化问题计算复杂,属于NP-hard问题。本文研究了有条件限制的多车辆路径优化问题模型的构建,引入了蚁群算法(Ant System,AS),将其进行了改进,并成功运用于有条件限制的多车辆路径优化问题,并结合Google Map,增加优化路径时所需数据的有效性和对车辆实时信息管理的有效性。本文的主要工作:(1)深入研究蚁群算法的基本原理,并提出了改进方案,在不同阶段使用不同的更新策略,前期增加搜索的广度,后期加快算法收敛。(2)建立有条件限制的多车辆物流配送路径优化问题的数学模型,讨论多车辆与单车辆情况的不同点,结合蚁群优化算法实现该模型,讨论算法实现过程中需要注意的问题。(3)结合Google Map实现一个原型系统,通过使用Google Map获取真实的数据、对车辆提供导航信息、帮助对车辆进行管理。物流配送车辆调度优化,是物流配送优化中关键的一环,也是电子商务活动不可缺少的内容。对货运车辆进行调度优化,可以提高物流经济效益、实现物流科学化。对货运车辆调度优化理论与方法进行系统研究是物流集约化发展、建立现代调度指挥系统、发展智能交通运输系统和开展电子商务的基础。目前,问题的形式已有很大发展,该问题以不仅仅局限于汽车运输领域,在水运、航空、通讯、电力、工业管理、计算机应用等领域也有一定的应用,其算法已用于航空乘务员轮班安排、轮船公司运送货物经过港口与货物安排的优化设计、交通车线路安排、生产系统中的计划与控制等多种组合优化问题。

【Abstract】 Vehicle routing optimization in logistics is one of the most critical parts in logistics. It can improve the economic benefit and realize the scientific process of logistics. The study of vehicle scheduling optimization theory and method definitely has its significant importance. It can enhance the intensive development of logistics; construct integrated logistics system and modern scheduling system of command; develop intelligent traffic transportation system and be a basic platform of electronic business.Vehicle Routing Problem is a NP-hard problem. In this paper, the model of Vehicle Routing Problem of multi car is built, then introduces and improves Ant System, which is successfully applied for Vehicle Routing Problem of multi vehicle.(1) Make further study of basic principle of ant algorithm, at different stages we are using different update strategy: we increase the breadth of search in early stage, we accelerate the convergence late.(2) We build the conditional multi-vehicle logistics path optimization logistics model combined with ant colony optimization algorithm, discuss the differences between multi-vehicle and single vehicle and the issues of algorithm implementation process.(3) We achieve a prototype system integrated with Google Map. In this prototype system, We gather the real data and help manage vehicle by using the this prototype system. VSP is both a pivotal tache in logistic distribution optimization and indispensable in electronic commerce. It can increase logistic economic benefit and realize logistic rationalization.. Now, the problem is not only applied to the field of auto transportation, but also to ship, avigation, communication, electricity, industry management, computer application etc. The algorithm has been applied into many combinatorial optimization problems such as the trainman’s shift arrangement in avigation, the optimization design of cargo arrangement in ship company, traffic routing arrangement, and the plan and control in the production system.

节点文献中: