节点文献
金属超分子化合物的合成、结构与磁性研究
Synthesis, Structure and Magnetic Properties of Metallosupramolecular Compound
【作者】 毕文涛;
【导师】 胡乃梁;
【作者基本信息】 安徽大学 , 分析化学, 2010, 硕士
【摘要】 金属超分子化学在超分子化学中有着突出的地位。其在八十年代末和九十年代迅速的发展为越来越多结构复杂的基于金属-配体相互作用的多金属配合物架构建立了自组装的指导原则。在新世纪的开始,将各种功能引入这些多金属体系已经成为金属超分子化学届的一大目标。超分子结构功能的研究将指导如何合理的设计合成具有物理、化学性质的自组装功能性金属超分子配合物。他们已被研究在电化学、光物理学、分子识别与封装以及催化上。而分子基磁性材料作为一种新型材料,由于其小型化、低能耗等优势,近些年来得以迅速发展。分子基磁性材料可以用作量子设备的磁性记忆或构建模块。金属离子的多核组装吸引了特别的关注,这与研究设计具有优良物理和化学性质的新系统的策略直接联系起来。过去,有两个重要的方面被重点研究:(1)如何理解和利用过渡金属配合物磁性结构的相互关系(2)如何控制多核配位化合物的结构。本文着力使用不同的配体和金属离子构建金属超分子化合物,并主要研究其磁性方面的性质。论文主要内容如下:(1)选用双(氨基(吡啶-2-基)-亚甲基)草酰腙酸作为配体,加入高氯酸,采用溶液挥发法制备出了可进行单晶检测的双(氨基(吡啶-2-基)-亚甲基)草酰腙酸化合物,采用了IR,元素分析和单晶X射线衍射仪对其进行了表征。晶体结构显示该化合物主要通过配体和连接剂之间的氢键和Π-Π共轭作用连接在一起,从而在原有配体的基础上形成一种新的超分子化合物。(2)先用1,10-邻二氮杂菲和Co(ClO4)2·6H2O合成(phen)3Co·(ClO4)2,再以KSCN和NiSO4合成K2Ni(SCN)6,最后将两种物质混合,制备了化合物[(phen)3Co]2·Ni(SCN)6,采用了IR,元素分析和单晶x射线衍射仪对其进行了表征。晶体结构显示该化合物是通过分子间静电引力相互作用连接两个结构单元并堆积成三维网状结构。(3)将制备好的Me6[14]N4diene·Cl04和K3Fe(CN)5NO反应,制备了化合物Me6[14]N4diene·Fe(CN)5NO单晶,采用了IR,元素分析和单晶X射线衍射仪对其进行了表征。晶体结构显示该化合物是由Me6[14]N4diene配体阳离子和[Fe(CN)5NO]3的静电引力相互作用堆积成三维网状结构。(4)将制备好的Me6[14]N4dieneCu·(ClO4)2和K2Fe(SCN)4反应,制备了化合物{Me6[14]N4dieneCu}2-Fe(SCN)4·(ClO4)2的单晶,采用了IR,元素分析和单晶X射线衍射仪对其进行了表征。晶体结构显示该化合物通过金属-配体配位键由一个Fe(SCN)4连接两个Me6[14]N4dieneCu,再通过分子间静电引力相互作用堆积成三维网状结构。变温磁化检测显示该化合物存在反铁磁性,C= 4.420 emu K/mol,θ=-0.86K。(5)将制备好的Me6[14]N4dieneCu·2ClO4和K2Co(SCN)4反应,制备了化合物Me6[14]N4dieneCu-Co(SCN)4,采用了IR,元素分析和单晶X射线衍射仪对其进行了表征。晶体结构显示该化合物通过金属-配体配位键由一个Co(SCN)4连接一个Me6[14]N4dieneCu,再通过分子间静电引力相互作用堆积成三维网状结构。变温磁化检测显示该化合物存在反铁磁性,C=2.998 emu K/mol,θ=-1.23K。
【Abstract】 Metallosupramolecular chemistry has a prominent position in supramolecular chemistry. In the late eighties and nineties, rapid development of Metallosupramolecular chemistry established the guiding principles of self-assembly for more and more complex structures of multi-metal complexes based on metal-ligand interaction framework. In the new century, the introduction of the various features into these multi-metal systems has become a major goal of the Supramolecular Chemistry. The research of the Supramolecular Structure and Function will guide rational design and synthesis self-assembly functional Metallosupramolecular complexes with the physical and chemical properties. They have been studied in electrochemical, optical physics, molecular recognition and catalysis and packaging.The molecular-based magnetic materials as a new material, because of its small size, low power consumption and other advantages, can be developed rapidly in recent years. Molecular-based magnetic materials can be used as the magnetic quantum device memory or building blocks. Multinuclear assembly of metal ions has attracted special attention, this study link up directly strategic of designing the new system with excellent physical and chemical properties. In the past, two important aspects of research have been focused on:(1) how to understand and use relationship of magnetic structure of the transition metal complexes (2) how to control the structure of polynuclear coordination compounds.This article focus on using different ligands and metal ions to construct Metallosupramolecular compound, of which we main research area of magnetic properties.The main contents are as follows:(1) selecting bis((pyridin-2-yl)amidine)oxalimidic acid as ligand, adding perchloric acid, the crystal of [Oxalylbis(azanediyl)]bis{[amino(2-pyridyl)methylene]ammonium} that can be detected was prepared by solution evaporation, the crystal was characterized by IR, elemental analysis and X-ray single crystal diffractometer. Crystal structure showed that the compound primarily through the hydrogen bond and the role ofΠ-Πconjugate between the ligand and connection linked together, to form a new supramolecular compound from the original ligand.(2) firstly using 1,10-phenanthroline and Co (ClO4) 2·6H2O to synthesize (phen)3Co·(ClO4)2, then using KSCN and NiSO4 to synthesize K2Ni(SCN)6, finally mixed the two substances, prepared compounds [(phen) 3Co] 2·Ni (SCN) 6, the crystal was characterized by IR, elemental analysis and X-ray single crystal diffractometer. Crystal structure revealed that the compound through the interaction of electrostatic forces between molecules linked two structural units together, and stacked into three-dimensional network structure.(3) adding prepared Me6[14]N4diene·C104 into K3Fe (CN) 5NO, prepared macrocyclic compound Me6[14]N4diene·Fe(CN)5NO, the crystal was characterized by IR, elemental analysis and X-ray single crystal diffractometer. Crystal structure revealed that the compound through the interaction of electrostatic forces between Me6[14]N4diene ligand and [Fe (CN) 5NO] 3- stacked into three-dimensional network structure.(4) adding prepared Me6[14]N4dieneCu·(C104)2 into K2Fe (SCN) 4, prepared macrocyclic compound{Me6[14]N4dieneCu}2-Fe(SCN)4·(ClO4)2, the crystal was characterized by IR, elemental analysis and X-ray single crystal diffractometer. Crystal structure showed that the compound through the metal-ligand coordination bond connected one Fe (SCN) 4 to two Me6[14]N4dieneCu, and through the interaction of electrostatic forces between molecules stacked into three-dimensional network structure. Variable temperature magnetic tests showed the existence of antiferromagnetic susceptibility, C= 4.420 emu K/mol,θ=-0.86K.(5) adding prepared Me6[14]N4dieneCu·2ClO4 into K2Co (SCN) 4, prepared Me6[14]N4dieneCu-Co(SCN)4, the crystal was characterized by IR, elemental analysis and X-ray single crystal diffractometer. Crystal structure showed that the compound through the metal-ligand coordinate bond connected one Co (SCN) 4 to one Me6[14]N4dieneCu, and through the interaction of electrostatic forces between molecules stacked into three-dimensional network structure. Variable temperature magnetic test showed that the existence of antiferromagnetic susceptibility, C= 2.998 emu K/mol,θ=-1.23K.