节点文献

语义Web中模糊系统的知识表示

Knowledge Representation for Fuzzy System on the Semantic Web

【作者】 梁艺多

【导师】 翟军;

【作者基本信息】 大连海事大学 , 管理科学与工程, 2010, 硕士

【摘要】 语义网作为下一代的互联网,使得网络上的信息具备语义,实现人与计算机在语义上的交互。但随着研究的深入,研究人员发现语义网中存在着大量的模糊信息,能否很好地处理模糊信息成为制约语义网进一步发展的关键因素。因此,如何更好地处理模糊信息成为当前语义网研究的热点。由查德提出的模糊理论已成功应用于各种工程领域,如:模糊洗衣机,地铁的模糊系统等。把模糊系统整合到语义网中是实现模糊知识共享与重用的重要途径。本文面向语义网中的模糊系统的知识表示,主要工作如下:(1)介绍语义网的核心技术,包括:本体的定义、语言变量模糊本体模型、资源描述框架和语义网规则语言。其中,语言变量模糊本体模型和语义网规则语言是实现语义网中模糊系统知识表示的重要工具;(2)研究了语言变量模糊本体的形式化表示。语言变量是由查得提出的重要概念,是模糊系统表示的工具,提供了模糊知识共享与重用的机制。本文通过RDF图与RDF语言表示语言变量模糊本体,这两种方式是等价的;(3)模糊规则是模糊系统的核心组成部分,模糊规则的表示是把模糊系统整合到语义网中的关键。本文系统地提出通过语义网规则语言表示模糊规则的方法,极大地提升语义网中模糊规则的表达能力,并扩展了基于模糊规则引擎的推理范围。(4)构建了一个流行病模糊诊断系统,并使用斯坦福大学开发的protege对系统进行表示,对异构系统间大规模地实现知识的共享与重用起了一定的借鉴作用。

【Abstract】 Semantic Web as the next generation of the Internet makes the information on the semantic web contain the semantics. And Semantic Web also enables to achieve human and computer interaction at the semantic level. How to solve the emerging fuzzy problem becomes an issue of research.The fuzzy theory proposed by Zadel has been successfully used in many control systems.Integrating the fuzzy system into the Semantic Web to solve the fuzzy problem is an inevitable choice.The paper is oriented to knowledge representation for the semantic web. and the relevant work is as follow:(1) Introduce the core technology of the semantic web, including:Definition of Ontology, Linguistic Variable Fuzzy Ontology, Resource Description Framework and Semantic Web Rule Language.(2) Study how to represent linguistic variables fuzzy ontology formally. Linguistic variable is an important concept presented by Zadel, which is a tool for fuzzy systems representation and provides a fuzzy knowledge sharing and reuse mechanisms. In this paper, RDF graph and RDF language are used to represent the linguishtic variable fuzzy ontology, which are equivalent for each other.(3) Fuzzy rule base is a core component of fuzzy systems and fuzzy rules representation is the key for fuzzy system’s integrating into the Semantic Web. This paper proposes a method to represent the fuzzy rules in the Semantic Web Rule Language, which greatly enhance the expressive force of fuzzy rules and expand the range of rules engine based reasoning.(4) Construct a fuzzy epidemic diagnosis system and use the protege of Stanford University to represent the system, which gives a reference for knowledge sharing and reuse between heterogeneous systems on a large scale.

节点文献中: