节点文献

纳米材料在新型酶传感器中的应用研究

【作者】 白慧萍

【导师】 杨云慧;

【作者基本信息】 云南师范大学 , 物理化学, 2008, 硕士

【摘要】 纳米材料具有大的比表面积、高的表面活性、强吸附能力及高催化效率等优异特性,可在增加生物分子(酶、抗原或抗体等)的吸附量和稳定性的同时提高生物分子(酶)的催化活性,使传感器的响应灵敏度得到提高。本研究论文通过发展新型的生物纳米材料并将其应用于生物分子的固定,以达到提高传感器灵敏度的目的。以此为出发点分别研制出一系列新型酶传感器。1.研制了一种以多壁碳纳米管(MWCNTs),纳米CeO2,壳聚糖(CHIT)有机-无机复合膜作为固定基质的酶生物传感器。该复合膜结合了无机多壁碳纳米管(MWCNTs),纳米CeO2和有机材料CHIT的优点,固定的辣根过氧化物酶(HRP)更好的保持了其生物活性(第2章);2.以多壁碳纳米管为模板,利用简单的电沉积法合成了花状的纳米ZnO,直接得到了MWCNTs/ZnO复合膜,这种结构有效地增加了电极的面积,使酶高效地固定在电极表面。MWCNTs和纳米ZnO的协同效应极大地提高了生物传感器的性能。同时此法将纳米材料的制备和固定结合起来,操作简单(第3章);3.用电沉积法制备了铂纳米线阵列并用于固定尿酸酶研制了一种新型尿酸酶传感器。利用铂纳米线阵列有效的表面积和对尿酸的氧化产物H2O2直接电催化性,实现尿酸酶与电极之间直接电子传递。制成的传感器具有较高的灵敏度、较宽的线性范围和较低的检测下限(第4章)。

【Abstract】 Nano-materials, exhibiting a large surface area with diameter less than 100 nm, high surface-activity, good biocompatibility, strong adsorption and great efficiency of catalysis, might be favorable for constructing biosensor. This thesis focuses on synthesizing new nano-biomaterials and using them to immobilize biomolecular in biosensor-fabricating for the purpose of improving the performance and sensitivity of biosensors. Therefore, a series of novel enzyme biosensors was developed.1. A HRP biosensor was developed using multi-walled carbon nanotubes, nanoporous CeO2 and chitosan inorganic-organic composite film as immobilization matrix with good stability. This material combined the advantage of inorganic species CeO2, multi-walled carbon nanotubes, and organic polymer chitosan, and immobilized HRP can keep the activity of biomolecules (Chapter 2);2. Zinc oxide nanoflowers were produced by electrodeposition onto multiwalled carbon nanotubes (MWCNTs) film. The MWCNTs/ZnOnano film can increase the area of the electrode effectively, and immobilize the enzyme on the electrode surface steadily. The synergistic effects of MWCNTs and ZnO improved the performance of the biosensor. Simultaneously, this simple method could combine preparation with immobilization of nano-materials (Chapter 3);3. Platinum nanowires array were prepared by electrodeposition in polycarbonate membrane (PC) and were used to construct a uric acid biosensor. With effective surface area and direct electrocatalytic to H2O2, which is oxidation production of uric acid, Platinum nanowires array could achieve the direct electron transfer between enzyme and electrode. The result showed that uric acid biosensor displayed high sensitivity, wider linear range and better detection limit (Chapter 4).

节点文献中: