节点文献

偏心轮推杆行星传动振动建模与模态分析

Vibration Modeling and Mode Analysis of Eccentric Wheel Handspike Planetary Transmission

【作者】 滕召金

【导师】 陶栋材;

【作者基本信息】 湖南农业大学 , 农业机械化工程, 2009, 硕士

【摘要】 偏心轮推杆行星传动属于活齿传动,它具有传动比范围大、传动效率高、承载能力强和结构紧凑等优点,这些特征使其在工业上具有广阔的应用前景。本学位论文对偏心轮推杆行星传动为研究对象,对偏心轮推杆行星传动的力学特性,偏心轮推杆行星传动啮合刚度,偏心轮推杆行星传动扭转振动以及系统振动,模态分析等方面进行了研究。根据偏心轮推杆行星传动的结构特点,推导出偏心轮推杆行星传动啮合副受力计算公式;介绍振动系统力学模型建立方法和振动系统理论建模方法与内容。建立了偏心轮与活齿啮合副以及内齿圈与活齿啮合副的啮合刚度计算公式,得到了影响偏心轮推杆行星传动啮合刚度的主要因素,从理论上找到了内齿圈刚度最小区域,分析了刚度与偏心距e、滚柱半径R1、滚柱长度b的关系、提出了提高啮合副刚度的方法。建立了偏心轮推杆行星传动扭转振动模型,分析参数变化对偏心轮推杆行星传动的固有特性影响;分析了基频与偏心距e、内滚柱半径R1、偏心轮半径R、推杆长度L的,提出了提高基频的方法。建立了以输入轴子系统、活齿子系统和输出轴——传动圈子系统三个子系统为基础的偏心轮推杆行星传动系统的弹性振动模型;对偏心轮推杆行星传动系统振动的固有频率进行了求解和分析;研究发现偏心轮推杆行星传动系统固有频率随活齿啮合位置的改变而呈周期性变化,系统的固有频率有重特征值的出现。通过Pro/E与ANSYS,建立了偏心轮推杆行星传动的有限元动力学模型;并求出了偏心轮推杆行星传动的固有频率和振型;获得了振型图和动画显示;获得了偏心轮推杆行星传动的动态特性和薄弱环节;验证了当β从0转过2π,偏心轮推杆行星传动每排活齿只有半圈处于工作状态;采用两个完全相同的内齿圈互成对称180°布置对减小冲击与振动是有利的。采用面向对象程序设计方法,利用计算机图形学原理和计算机仿真技术,在MATLAB7.5平台上开发了偏心轮推杆行星传动振动建模与模态分析研究分析软件,能实现当量曲率半径分析、啮合刚度分析、基频分析、固有频率分析。

【Abstract】 The eccentric wheel handspike planetary transmission is movable teeth transmission. The eccentric wheel handspike planetary transmission has many advantages, such as larger scale of transmission ratio, higher transmission efficiency, stronger carrying capacity, small in size and simple in structure etc. The eccentric wheel handspike planetary transmission has been widely applied in industry because of all these characteristics.Eccentric wheel handspike planetary transmission has been studied in this essay. Mechanics characteristics, mesh efficiency, torsion vibration, system vibration and modal analysis have been studied.According to the structural characteristics of eccentric wheel handspike planetary transmission, we induce the mesh vice-force formula; introduce the mode of Mechanical vibration system and Vibration theory.The calculating contact stress and strength formulae have been inferred while the eccentric wheel meshes the handspike or the ring gear meshes the handspike, and the influential factors of contact stress and strength have been analyzed. We find the smallest ring stiffness region in theory, analyze the relationship between the stiffness and eccentricity e, roller radius R1, the roller length b, and propose methods to increase the engaging stiffness.We establish the reverse vibration model of eccentric wheel handspike planetary transmission and analyze the impact of parameters changes on inherent characteristics of eccentric wheel handspike planetary transmission. We Analyze the relationship between frequency and eccentricity e, the roller radius R1, eccentric radius R, length L putt, and put forward methods to increase the base frequency.Based on three groups: input axis subsystem, movable teeth subsystem and output axis—circle drive subsystem. We establish elastic vibration model of eccentric wheel handspike planetary transmission and analyze natural frequency of vibration system of the eccentric wheel handspike planetary transmission. The study finds that the natural frequencies of eccentric wheel handspike planetary transmission cyclically change with the meshing tooth position; natural frequencies of the system are the emergence of Eigen values.By the way of Pro/E and ANSYS, we establish FEM kinetic model of eccentric wheel handspike planetary transmission, and calculate the natural frequency and vibration mode of eccentric wheel handspike planetary transmission. We get the vibration mode and animation show. We get the dynamic characteristics and the weak point of the eccentric wheel handspike planetary transmission, verified that whenβturning from 0 to 2π,only semi-circle in each row of eccentric wheel handspike planetary transmission is at work; it is beneficial to use two identical ring gear 180°symmetrical into Each other to reduce the impact and vibration.Adopted facing target’s procedure design method, using computer graphical principles and simulation technology, the software about vibration modeling and modal analysis is developed on MATLAB 7.5 platform, which can analyze equivalent radius of curvature, meshing stiffness, fundamental frequency and natural frequency.

节点文献中: