节点文献
无界广义逆的扰动与极小不动点定理
Unbounded Perturbation of Generalized Inverse and Extreme Minimum Fixed Point Theorem
【作者】 徐雪;
【作者基本信息】 哈尔滨师范大学 , 应用数学, 2009, 硕士
【摘要】 设E和F是Banach空间, B(E,F)表示从空间E到F的有界线性算子全体.当A∈B(E,F)具有有界的广义逆A+∈B(F,E)时, Nashed和Chen证明了一个很有用的定理:对任意满足T ? A < A+ -1的T,若使C-1(A,A+,T)TN(A) - R(A),则B = A+C?1(A,A+,T)是T的一个广义逆,且N(B) = N(A+)和R(B) = R(A+),其中C(A,A+,T) = IF + (T - A)A+.在这篇文章中,我们将上述结果推广到A不必具有有界广义逆的情形.并且我们证明这里的定理包含Nashed和Chen的定理.所以我们的结果推广了上述己知的定理.另外,本文的另一个结果是利用局部凸空间中Fan-Kakutani不动点定理,将局部凸空间中集值映射的极小不动点定理进行推广,把原定理中的半范数条件减弱为次可加泛函,得到具局部凸空间中极值映射的一个极小不动点定理.最后,我们将极小不动点定理与广义逆理论相结合,得到一类不适定的半线性两点边值问题的最佳逼近解的刻画.
【Abstract】 Let E,F be Banach spaces, B(E,F) denote all the bounded linear operatorsfrom E to F, and A+ be a generalized inverse of A. The following theorem byNashed and Chen is known well: for all T satisfying T - A < A+-1, ifC-11(A,A+,T)TN(A) ? R(A), then B = A+C?1(A,A+,T) is a generalized inverseof T, and N(B) = N(A+), R(B) = R(A+), where C(A,A+,T) = IF + (T ? A)A+,which is very useful. In this paper, the theorem is generalized to the case ofthat A+ does not need to be bounded. Let A∈B(E,F), and R(A), N(A)split F, E respectively, say F = R(A)⊕N+ and E = N(A)⊕R+. LetA+ : D(A+) = R(A)+˙N+→E be a generalized inverse of A corresponding tothe decompositions above. The following result is proved that if T∈B(E,F)satisfies N(T)∩R+ = {0}, R(T)∩N(A+) = {0} and TR(A+) = R(T), thenB = A+C?1(A,A+,T) : R(T)+˙N+→E is a generalized inverse of T with N(B) =N(A+) and R(B) = R(A+), which is a generalization of the theorem by M.Z.Nashedand Chen. Moreover, in this paper, by Fan-kakutani fixed point theorem, we gen-eralized the extreme minimum fixed point theorem for set-valued mappings in thelocal convex space in Xu’s paper. We use sub-additive function instead semi-normsto prove a extreme minimum fixed point theorem for set-valued mapping in thelocal convex space.