节点文献
基于多传感器信息融合的同步定位与地图创建研究
Researches on the Simultaneous Location and Mapping of Mobile Robot Based on Multi-sensor Data Fusion
【作者】 蒋燕;
【导师】 刘国荣;
【作者基本信息】 湘潭大学 , 控制理论与控制工程, 2009, 硕士
【摘要】 随着社会信息化技术的发展,工业、农业、科研、国防等各个领域越来越需要高性能的自动化系统。特别是在机器人与自动化领域,更是引起了很多人的兴趣。当前世界各地的机器人公司和科研机构正加紧开发研制各种智能移动服务机器人来代替人类工作,例如开发研制各种自主车辆系统,用于安全驾驶或者军事。在所有这些应用中,机器人自主导航是一个最基本的需求,而机器人定位又是自主导航的最基本内容,并且现代定位方法是结合内、外部传感器的基于环境地图的定位方法。换言之,定位和地图创建是研究未知环境下移动机器人导航技术所涉及的两个主要内容。它们之间并非相互独立,在考虑到所有传感器信息都具有不确定性的情况下,单独考虑其中一个问题是不符合实际情况的。本文主要研究基于不确定信息的自主移动机器人(Autonomous Mobile Robot, AMR)同步定位与地图创建(Simultaneous Localization and Mapping,SLAM)问题,旨在构建一个完整的系统,使得机器人在未知结构化环境下实现“自主”定位与地图开发的能力。首先对不同的传感器进行了分析与比较;其次,分析了单个机器人在未知环境下同步定位与地图创建问题。在环境的特征提取中,采用了一种基于新的多尺度几何分析工具——Ridgelet进行线段特征的提取,并采用小波变换阈值法去除干扰点的方法。由于Ridgelet在检测直线奇异性,以及小波在检测点状奇异性上的优势,本方法能提取到更为准确的特征;最后,在回顾和总结目前存在的移动机器人同步定位与地图创建方法的基础上,提出了一种基于多传感器信息融合的扩展卡尔曼滤波(Extended Kalman Filter, EKF)方法,实现了机器人的高精度定位,并将定位结果应用于地图创建,从而构成了完整的SLAM系统。室内结构化环境下的仿真实验结果证明,系统准确性高而且具有较好的实时性和鲁棒性,达到了设计要求。仿真结果证明了作者提出方法的有效性。
【Abstract】 Autonomous system is required increasingly in the fields of industry, agriculture, scientific research and national defence along with the development to information technology. More and more research is focused on robot and robotization robot company and research institute are developing various service robots to work instead of human and developing autonomous land vehicle for the sake of safe drive or military affairs. Autonomous navigation is necessary, and localization is a funda- mental problem for autonomous navigation and modern localization method is based on environment map with interoceptive and exteroceptive sensor. In other words, mobile robot navigation in unknown environment involves two important components: localization and mapping. They are not independent mutually considering that all sensor information is uncertainty. So dealing with only one of them does not agree with the physical world.This paper focused on Simultaneous Localization and Mapping (SLAM) of Autonomous Mobile Robots (AMR) based on uncertainty environmental information, in order to build a complete system that makes robots have the ability of autonomous map development in unknown structural environment. Firstly various kinds of sensors are compared and analyzed, secondly the single mobile robot simultaneous 1ocalization and mapping(SLAM) under unknown environment is deeply investigated. For the feature extraction from environment, we proposed a ridgelet based method for straight line feature and then used wavelet thresholding to smooth away the disturbance points, which combines the superiority of ridgelet in detecting linear singularities and wavelet in detecting point-like singularities together to get more accurate features. At last, we also realize precise localization using Extended Kalman Filter (EKF) based on multi-sensor fusion, and apply localization results to map building to form complete SLAM system. The indoor experimental results demonstrate the accuracy, real-time, and robustness of SLAM system, and fulfills the design requires completely.
【Key words】 mobile robot; extended Kalman filter; simultaneous localization and mapping; data association;