节点文献

形式幂级数环上的自对偶码

On Self-dual Codes over the Ring of Formal Power Series

【作者】 胡学琴

【导师】 刘宏伟;

【作者基本信息】 华中师范大学 , 基础数学, 2009, 硕士

【摘要】 有限环上纠错码的研究始于上世纪70年代,Blake和Speigel等学者首先研究了整数剩余类环Zm上的码。接着,Calderbank和Sloane研究了p-进制整数环上的码,进一步,Doughertyl Liu和Park定义了一类类似Zpe的环Ri同时对这类环和形式幂级数环上的码进行了研究。本文继续对Dougherty,Liu和Park定义的这类环Ri和形式幂级数环上的码展开了研究,得到了以下主要结果:在第三章,定义了Ri上的Ⅱ型码,给出了这些码的一些性质和Ri上的自对偶码提升成Ri+1上的自对偶码的一个必要条件。在第四章,我们给出了形式幂级数环上的自对偶码的一种构造方法,并且给出了形式幂级数环上的自对偶码存在的充分必要条件。

【Abstract】 The research of error-correcting codes over the finite rings began in 1970s.Blake and Speigel and other researchers had discussed codes over the rings Zm.Later Calderbank and Sloane discussed codes over the rings p-adic.Further,Dougherty, Liu and Park defined a class of ring,Ri which was similar with the rings Zpe and the ring of formal power series.Here,Ri= {a0 + a1r + a2r2 +…+ ai-1ri-1| as∈F,(?) 0≤s≤i - 1}.In this definition,F was a finite field and ri-1 was equivalent to zero,but ri was not equivalent to zero.At the same time,the researchers discussed codes over these two class of rings.In this thesis,we shall continue the stduy on codes over the rings Ri and the ring of formal power series.We obtain the following results.In chapter 3,we define a typeⅡcode over the rings Ri.We give some properties of this code and a necessary condition for the self-dual codes over Ri to lift to the self-dual codes over Ri+1.In chapter 4,we give a method of constructing the self-dual codes over the ring of formal power series,and the sufficient and necessary condition for the exist of the self-dual codes over the ring of formal power series.

  • 【分类号】O157.4
  • 【被引频次】1
  • 【下载频次】76
节点文献中: