节点文献
基于肤色与特征的视频流人脸快速检测与跟踪方法研究及系统实现
Research and System Realizing of Face Rapid Detection and Tracking Method with Video Streaming Based on Complexion and Characteristics
【作者】 金益;
【导师】 徐汀荣;
【作者基本信息】 苏州大学 , 计算机技术, 2007, 硕士
【摘要】 信息数字化和网络化的高速发展对国家以及社会生活安全提出了全新的要求。在这种环境下,传统的安全技术显得力不从心。而生物特征认证技术是解决信息化、数字化、网络化社会安全问题的最好的办法之一。常用的生物特征认证技术包括:人脸识别、虹膜识别、指纹识别、声音识别、步态识别等。在众多的生物特征认证技术中,人脸识别因具有获取直接隐蔽、识别速度快、识别准确率高、安全性高、使用条件简单,非侵犯性等特点,在公安、安防、银行、计算机网络信息安全等诸多领域内具有广阔的应用。人脸识别研究工作一般分为三个过程:人脸检测,面部特征定位以及人脸特征提取与识别。而人脸检测是人脸识别过程中最为基础和关键的环节。只有精准的定位人脸的位置,才能够准确的识别人脸。本文首先概述了目前国内外比较流行的几种人脸检测的算法,分析了各种算法的优缺点,结合人脸的肤色和特征几何分布特征,我们提出了基于肤色与特征相结合的视频流人脸快速检测的方法,并建立了系统原型,适用于实际网络在线考试中的身份认证。本文以普通PC摄像头作为图像采集设备,以采集的视频流为数据源,截取视频流中的单帧图像,通过转换彩色空间、人脸肤色建模、后处理操作实现了人脸定位,通过图像马赛克、边缘提取,显著特征点定位等技术定位人脸图像的各特征点。在此基础上通过人眼定位实现了在视频流中对于人脸的跟踪的算法研究。试验结果表明,我们所实现的人脸检测适用于近距离人脸的检测,定位速度快,误检率低,可以应用于网络考试的身份认证。
【Abstract】 The rapid evolutions of digital information and Internet rise new demands for safety of country and social life. In this situation, traditional safety technologies show incompetent. Biological authentication technology is one of the best ways to solve the safety issue appearing with the development of digital information and Internet. Among these technologies, because of the merits such as directness, quick recognition, high performance, high safety, easy use, and no impingement, face recognition has many applications in the fields of police, safety protection, bank, and net information safety.The process of face recognition includes three steps: face detection, locating characteristics of face, face characteristics extraction and recognition. Among them, these detection is the most fundamental and important one.This paper researches on some popular algorithms inside and outside of our country. Meanwhile, these algorithms are comparably analyzed about their merits and shortcomings. We rise a rapid detection and tracking algorithm based on the color and character of human face. A prototype of the system applicable to the examination of the actual online network authentication. In this paper as an ordinary PC camera image acquisition equipment to collect the data source for streaming video, video streaming interception in the single-frame images, through the conversion of color space, color modeling Face, after handling Face positioning realized through Image mosaics, edge extraction, notable feature points, and the setting of technical positioning of the Face Image feature points. On the basis of this position through the eyes achieved in video streaming in the face tracking algorithm research.Test results show that we are realizing the face detection and tracking algorithm applied to the face at close range detection, positioning speed, low error rate seized, can be used to test network authentication.
【Key words】 Video streaming; Face detection; Face tracking; Skin mode; Feature Extraction Edge Detection;
- 【网络出版投稿人】 苏州大学 【网络出版年期】2008年 11期
- 【分类号】TP391.41
- 【下载频次】122