节点文献

多自由度检测机器人控制系统开发与位姿误差补偿

Research of Multi-freedom Testing Robot Control System and Pose Error Compensation

【作者】 祝建礼

【导师】 徐志农; 周晓军;

【作者基本信息】 浙江大学 , 机械制造及其自动化, 2007, 硕士

【摘要】 超声无损检测技术在产品质量控制中有着举足轻重的作用,尤其是对具有复杂形面的曲面工件,提高检测的精度、效率和自动化程度,是超声检测研究的热点和重点问题。论文以“航空螺旋桨水浸超声自动检测系统”研发为背景课题,开发了基于PC和PMAC双CPU伺服控制系统为核心的机器人检测系统,结合相应的误差补偿和控制策略实现了超声检测的高精度自动化。系统利用增量式编码器实现全闭环位置控制和利用PAMC卡自带软件实现PID参数优化调节控制,并把自适应PID参数调整应用到系统中,实现伺服系统的精确控制;通过分析检测系统机械运动特性,利用摄动误差补偿法对机器人系统进行误差补偿,消除由于机械装配、加工等因素产生的误差对探头位姿的影响,提高整套检测系统的位置控制精度。第一章为绪论。本章首先介绍了论文的课题背景和研究意义,着重介绍了国内外对高精度超声检测机器人系统及误差补偿的研究情况;最后介绍了论文的主要研究内容和各个章节组织情况。第二章为检测机器人总体结构介绍。本章主要完成了对检测机器人机械结构介绍和机器人的动力驱动及机器人控制系统控制模式的选择。第三章为超声检测机器人控制系统开发。本章重点介绍了超声检测机器人数控系统的开发和研究,分析了系统软硬件的设计及其实现;对超声检测机器人系统的硬件结构和主要部件进行了说明,简单介绍了检测系统的软件子模块;最后介绍PMAC控制器的PID控制原理,重点分析PID参数的调节方法及优化,同时针对系统的需要应用了PID参数的自适应调整方法。第四章为超声检测机器人系统的运动学建模分析。首先介绍了机器人运动学建模的一般方法;然后以超声检测机器人为研究对象,分析机器人的结构原理,建立起运动学模型,根据实际空间区域及项目要求推导出运动学正解及逆解,为后章的机器人误差补偿提供理论依据。第五章为超声检测机器人系统位姿误差分析与补偿。本章首先分析了检测机器人误差来源,对由多种静态因素引起的机器人综合位姿误差补偿作了分析。应用摄动误差补偿法,即给机器人各连杆预加一个附加变量运动,使末端执行器相应做出微小的附加运动来抵消或减小机器人末端的实际运动误差,达到理想的定位精度。最后利用实验数据验证误差补偿方法的实用性和可行性。第六章为总结与展望。对全文工作进行了总体概括,总结了论文的不足之处,并对将来进一步工作做出展望。

【Abstract】 Ultrasonic non-destructive inspection is important in products quality control. For the freeform surface parts, how to improve the precision, efficiency, the level of automation is a very important and pop problem in ultrasonic inspection. The paper is based on the project background which manufactures the Air propeller flooding automatic ultrasonic testing system. The servo control equipment based on double CPU of the IPC and the PMAC is the core of the robot system. Combined with the corresponding error compensation and control strategies, the robot system achieves the high-precision ultrasonic testing automation. The system uses the incremental encoder which realizes the closed-loop position control and the PMAC software which can adjust PID parameters adaptively. Both implement high-precision positioning of the servo system. By analyzing mechanical movement characteristics of the inspection system, we know some factors may affect the probe gesture, such as the mechanical assembly, the mechanical machining error, and so on. Given the negative direction of movement ahead of the schedule, the robot system can produce an additional movement which offers the actual error. Taking advantage of the way, the system can raise the position precision.In chapter one, this is the preface of this dissertation. The chapter firstly introduces the project background and research significance, and then highlights the study about the high-precision ultrasonic testing robot system and error compensation at home and abroad .In the end, the dissertation show major content and organization of the various chapters.In chapter two, this introduce the mechanical structure of the robot system. The section mainly achieves the explanation about the robot system’ mechanical structure and the choice on the power-drive and robot control mode.In chapter three, this is the study and research of the ultrasonic testing robot system. The section focuses on exploitation of the ultrasonic testing robot CNC system, analyzing the design and implementation of the hardware and software. This chapter introduces the robot system hardware architecture and explains those main components. In the end, the section introduces the PMAC’s PID control principle, the adjustment method and optimization about PID parameters. At the same time, we apply the PID adaptively adjustment method to meet the need.The chapter four introduces kinematics modeling method on robot system Firstly; the section introduces kinematics modeling method on robot system. After analyzing the robot structure theory, we establish the kinematical model of the ultrasonic testing robot system. Finally, according to the actual thing and need of the project, we gain the Forward Kinematics and inverse kinematics, which is the theoretical basis of the robot error compensation in chapter five.In chapter five, this is the error analysis and compensation of the ultrasonic inspecting robot system. This chapter analyzes the sources of error, Appling the perturbation error compensation method eliminates the error which was caused by some factors. We make every pole move additional variable ahead of schedule which makes tiny additional campaigns on the end of the robot.The additional campaigns can offset or reduce the actual error of the robot system. Finally, the experimental dates validates that error compensation method is practicalities and feasibilities.The chapter six is the Summary and Outlook .The section summarizes the retrospections and conclusions of this paper. At the same time, the future work suggestions were given.

  • 【网络出版投稿人】 浙江大学
  • 【网络出版年期】2008年 06期
  • 【分类号】TP242
  • 【被引频次】12
  • 【下载频次】745
节点文献中: