节点文献
基于SVM和链接分析的蛋白质关系抽取系统
Protein-Protein Interaction Extraction System Based on SVM and Link Parse
【作者】 吴宝栋;
【导师】 林鸿飞;
【作者基本信息】 大连理工大学 , 计算机应用技术, 2007, 硕士
【摘要】 随着生物医学文献数量的急剧增长,各种各样的生物医学信息出现在生物医学研究者面前。这给生物医学研究者带来很沉重的负担,使他们很难迅速地从这些文献中找到需要的信息。为了提高他们的工作效率,迫切地需要一些自动化的工具帮助他们在海量生物医学文献中迅速地找到需要的信息。生物医学文献中蛋白质(基因)相互作用关系抽取的研究正是在这种背景下产生的。此外,从生物医学文献中抽取蛋白质(基因)相互作用关系也具有很高的应用价值,对蛋白质知识网络的建立、蛋白质关系的预测、新药的研制等均具有重要的意义。本文构建了一个生物医学文献中的蛋白质相互作用关系抽取系统。该系统使用基于支持向量机(SVM)和链接分析(Link parse)的方法抽取蛋白质(基因)交互作用关系。系统首先通过指代消解替换生物医学文献中的第三人称代词,然后使用条件随机域模型对生物医学文献进行实体识别,通过链接语法分析器分析文献中句子的链接路径,最后通过四大类特征的提取,包括:词项特征、关键词特征、链接特征以及词对特征,利用SVM分类器抽取蛋白质(基因)相互作用关系。本文首先介绍了蛋白质相互作用关系抽取的相关知识和研究概况,然后重点介绍了本文的实验系统所使用的核心方法——统计学习理论与支持向量机(SVM),接下来对系统使用的其他方法进行了详细描述,包括指代消解、命名实体识别、链接语法与链接语法分析器以及链接路径提取、关系抽取的特征选取。本文的最后给出了系统实现与性能评估。
【Abstract】 As the quantity of biomedical literatures is increasing rapidly, various kinds of biomedical information appear in front of biomedical researchers. This brings biomedical researchers a heavy burden and makes it difficult to find needed information from these literatures rapidly. In order to improve their work efficiency, an automated facility is urgently needed to find needed information rapidly and accurately. Research on protein-protein interaction automatic extraction from biomedical literature emerges under this background. Furthermore, there is high application value in protein-protein interaction automatic extraction from biomedical literature, which can help to build protein relation network, predict protein function and design new drugs.This paper presents a protein-protein interaction extraction system for biomedical literature. This system applies the approach based on Support Vector Machine model and link parse to extract protein-protein interactions and it first uses anaphora resolution to replace the third person pronouns, then applies Conditional Random Fields model to tag protein names in biomedical text and a Link Grammar Parser to parse the link path in sentences. At last, after using feature extraction and choice of four kinds to construct feature vectors, uses Support Vector Machine model to extract complete protein-protein interactions.This paper first introduces related knowledge and works on protein-protein interaction extraction, then introduces the core approaches of system which are Statistical Learning Theory and Support Vector Machine model in detail. Later describes other approaches of system particularly, such as anaphora resolution, entity recognition, Link Grammar and Link Grammar Parser and feature choice for interaction extraction. The last part of this paper presents the implementation and the assessment of the system.
【Key words】 Interaction Extraction; Support Vector Machine; Link Grammar Parse; Anaphora Resolution; Entity Recognition;
- 【网络出版投稿人】 大连理工大学 【网络出版年期】2008年 06期
- 【分类号】Q51-3;R319
- 【被引频次】1
- 【下载频次】164