节点文献
一类多维非线性抛物方程解的存在性与Blow-up
Existence and Blow-up of Solutions of a Class of Multidimensional Nonlinear Parabolic Equations
【作者】 李宝平;
【导师】 刘亚成;
【作者基本信息】 哈尔滨工程大学 , 应用数学, 2007, 硕士
【摘要】 本文研究以下非线性抛物方程的初边值问题解的存在性。其中,Ω(?)Rn为适当光滑的有界域,f∈C。为得到问题(1)-(3)整体广义解的存在性及唯一性,对σ(s)(1≤i≤n),f(u)做如下假设(H1)σ1,f∈C,(?)k,使(?)i(s)=σi,(s)-ks-σi(0)非减,(H2) (?)A,A1,及α>0,使A1|s|α≤|(?)i(s)|≤A|s|α(H3) (?)B,B1及γ,使|f(u)|≤B|u|γ+B1其中这里,k,A,A1,B,B1及α,γ均为常数,而当σ′i(s)(1≤i≤n),f′(u)有界时,存在唯一整体强解。本文还证明了对应非负初边值解的非负性,讨论了解的渐近性质及Blow-up。对一维情形,考虑了更为广泛的边界条件,证明了只要σ′(s),f′(u)下方有界,即可得到整体强解的存在唯一性,并详细讨论了解的光滑性。
【Abstract】 In this paper, we consider the initial boundary value problem for a class of multidimensional nonlinear parabolic equationΩ(?)Rn is a propriate bounded domain and f∈C. And the existence of solution is established. Whenσi(s)(1≤i≤n), f(u) satisfy(H1)σi, f∈C, (?)k, satisfy (?)i(s)=σi(s)-ks-σi(0) is not decreasing function,wherek, A, A1, B, B1 andα,γare constant, we obtain the existence and uniqueness of the global generalized solution.Whenσ′i(s)(1≤i≤n),f’(u)are bonuded there exists a unique global strong solution.The nonnegativity of the solution corresponding to the nonnegative initial boundary value, the asymptotic behavior and the blow-up of the solution are also discussed.For the case of one dimension, more general boundary conditions are considered;so long asσ’(s), f’(u) is bounded from below, the unique global strong solution can be obtained;furthermore, the smoothness of solution is discussed in detail.
【Key words】 nonlinear parabolic equation; Galerkin method; global solution; existence; blow-up;
- 【网络出版投稿人】 哈尔滨工程大学 【网络出版年期】2008年 08期
- 【分类号】O175.29
- 【下载频次】33