节点文献
高维非线性热弹方程解的爆破
Blow-up of Solutions in Nonlinear Multi-dimensional Thermoelasticity
【作者】 付小雁;
【导师】 秦玉明;
【作者基本信息】 河南大学 , 应用数学, 2006, 硕士
【摘要】 本文研究下面给出的一类有外力作用和热存储的高维非线性热弹方程的初边值问题弱解的爆破现象:这里u=u(x,t)表示位移;θ=θ(x,t)表示温度差;Ω是Rn(n≥1)上的有光滑边界(?)Ω的有界区域;函数f=f(t,u)是一个非自治外力;函数g(t)是松弛核函数且*表示卷积,即g*y(·,t)=integral from n=0 to t g(t-Υ)y(·,Υ)dΥ;u0(x),u1(x),θ0(x)表示给定的初值,并且满足相容性条件。与一般的热弹方程组相比,我们所考虑的方程组含有核项g*[divK2▽θ],我们主要研究了当g(t)为正定核,或者由g(t)构造的一类函数eαtg(t)和e-αtg(t)(α>0)是正定核时,上述问题的解的爆破情况。
【Abstract】 In this paper we study the blow-up phenomena of weak solutions in a finite time to the following initial boundary value problem with a forcing term and a thermal memory for multi—dimensional thermoelastic model :Here by u = u(x, t) and θ = θ(x, t) we denote the displacement and the temperature difference, resperctively; Ω is a bounded domain in Rn(n ≥ 1)with a smooth boundary (?)Ω ; the function f = f(t,u) is a nonautonomous forcing term ; the function g — g(t) is the relaxation kernel and the sign * denotes the convolution product , i.e. , g* y(.,t) = ∫0t g(t Τ)y(.,T)dT ; u0(x),u1(x),θ0(x) denotes the initial date . we consider the problem with the kernel term g*[divK2▽θ] ,and prove the blow—up phenomena of weak solutions in a finite time with g(t) is a positive definite kernel or with the positive kernels of the forms eαtg(t) and e<sup>αtg(t)(α> 0) constructed from g(t) .
【Key words】 Thermoelasticity; Nonlinear equations; Weak solutions; Blow—up;
- 【网络出版投稿人】 河南大学 【网络出版年期】2006年 10期
- 【分类号】O175.2
- 【下载频次】23