节点文献
图的三类染色及其概率方法
Three Kinds of Colorings of Graphs and the Probabilistic Method
【作者】 安明强;
【作者基本信息】 西北师范大学 , 应用数学, 2006, 硕士
【摘要】 本文通过归纳定义了图的三类染色一无圈染色,邻点可区别的染色和点可区别的染色。应用Lovász局部引理的赋权形式,讨论并得到了任一最大度△≥4的图G,其邻点可区别的无圈边色数至多为16△2。应用Lovász局部引理的一般形式,讨论并得到了任一最大度△≥322ln5,最小度δ≥32(△ln△)1/2的图G,其邻点可区别的全色数至多为2△+1+2(△ln△)1/2;进一步,若全色数χt(G)≤△+2,则其邻点可区别的全色数至多为△+2+2(△ln△)1/2。然后,通过具体构造染色的方法讨论并给出了路、圈、完全图、星、扇、轮的Mycielski图,路与圈的联图Pm∨Sn的点可区别的全色数。
【Abstract】 In this paper,by induction we define three kinds of colorings of graphs,which are acyclic coloring,adjacent vertex-distinguishing coloring and vertex-distinguishing coloring.With applying the weighted form of the Lovasz local lemma,we have discussed and obtained that the adjacent vertex distinguishing acyclic edge chromatic number is at most 16Δ2 for any graph G with maximum degreeΔ≥4. With applying the general form of the Lovasz local lemma,we have discussed and obtained that the adjacent vertex distinguishing total chromatic number is at most 2Δ+1 + 2(ΔlnΔ)1/2 for any graph G with maximum degreeΔ≥322ln5 and minimum degreeδ≥32(ΔlnΔ)1/2;furthermore,the adjacent vertex distinguishing total chromatic number is at mostΔ+ 2 + 2(ΔlnΔ)1/2 if the total chromatic number Xt(G)≤Δ+ 2.Then with giving colorings of a graph, vertex distinguishing total chromatic numbers on Mycielski’s graphs of path,cycle,complete graph,star,fan and wheel,and vertex distinguishing total chromatic numbers of Pm∨Sn are discussed and given,respectively.
【Key words】 Local Lemma; Adjacent vertex distinguishing acyclic edge coloring; Adjacent vertex distinguishing acyclic edge chromatic number; Adjacent vertex distinguishing total coloring; Adjacent vertex distinguishing total chromatic number; Vertex distinguishing total coloring; Vertex distinguishing total chromatic number;
- 【网络出版投稿人】 西北师范大学 【网络出版年期】2007年 04期
- 【分类号】O157.5
- 【下载频次】89