节点文献
算子权移位的Banach可约性
Banach Reducibility of Operator Weighted Shifts
【作者】 张潇;
【导师】 纪友清;
【作者基本信息】 吉林大学 , 基础数学, 2004, 硕士
【摘要】 设H是复可分的Hilbert空间,若{Wi}i=1+x是一列H上的一致有界的线性算子,S∈L(l2(H))。且有那么称S为一个单边算子加权移位,简记为所有这样定义的算子组成的集合,记为IWl2(H)。特别的,若设C代表复平面,那么S就称为一个n重单边算子加权移位,所有这样的算子的集合记为IWl2(Cn)。算子权移位一直是人们关心的重要的具体算子类,人们对这类算子感兴趣主要因为它经常用于构造正反两方面的例子,而且算子理论中的某些一般性的问题都与其密切相关,因而一直受到重视。 设T∈L(H).M∈LatT,如果存在N∈LatT使得,M∩N={0}且M+N=H。则称M是T的一个Banach约化子空间。若T有非平凡的Banach约化子空间就称T是Banach可约的,否则称T是Banach不可约的。T是Banach可约的当且仅当存在非平凡的幂等算子与之交换当且仅当T相似于可约算子。 算子的约化问题在整个算子理论中有很重要的意义,当H是有限维空间的时候,T是强不可约算子,即Banach不可约算子当且仅当T在某个基底下的矩阵表示是Jordan块,因此强不可约算子是Jordan块在无穷维空间的自然推广。这已被江泽坚,蒋春澜及其合作者所证实。 前向的纯量单边移位是强不可约的。在[1]中李觉先等人证明了若S∈IWl2(Cn),且σe(T)不连通,那么S是Banach可约的,那么这种性质对于更大范围IWl2(H)中的算子是否成立?本文主要探讨了这个问题并得到了肯定的答复。 对于IWl2(H)中的算子本文首先证明了 引理2.1对于每个Hi,都存在,使得每个Wi都能表成吉林大学硕士学位论文算子权移位的Banad,可约性。{‘一,)。{犷一‘,一(1)州‘/了‘..皿...lweweee、、、 南了、上 r(i2 亡 这样对于每个多任川’(z(H)都可以酉等价一个上三角的单边算子权移位.设V={人:rl<入卜r:}c脚,(匀是。。(S)中的一个洞,取、。任V.我们可以得到(R。川亏一入。))上限制在H。上的一个,l维基底,利用这个基底我们把5{H一忿化成上三角算子权移位,其中每个H弓都表成(1)的形式.那么有引理2.3设S任川’(z( H).S、{忧}彗.那么g酉等价于、一厂一“‘丫渺 \0刀/州HO川)(2)其中‘2(,侧)=0几〔,,划;·州,=v{。}‘,:‘三.,三,,}·,全O·‘2(H二、“)-O霆。(H,。川,).一攻任粼自州))·B任自/z(H。州))是权可逆的上三角算子权移位. 接着对入。与注.B的谱,本性谱的位置关系进行分析有 命题3.15任月I’尸(H),万、{I卜}彗,入。任v.s酉等价于(2)的形式,那么有入《,锗。(B)==汀,·(B).入。)>,·(B). 从引理2.3我们不妨设且任111一尸(Cn).对于月f尸(C叻中的算子,由!11中的某些结果,我们可以得到 命题3.25任111一了“(H).万{H诗彗.入。〔V.S酉等价于(2).的形式,那么有.\(,贾二,(一们.入,<,·1(勺.吉林大学硕士学位论文算子权移位的Bol,。c.1l可约性 对1任乙(H,).B任乙(从).工、。是定义在乙(从,万,)上的R()s一111山川l算子,私浏工)二一去Y一工B.对于任意的一Y任粼负,Hl).引入ROSoll)11,111算子得到 引理3.6‘4任111一/Zf〔”,):一4{42}彗.B任I下下丫2(H).B{B,}彗.若州勺自氏(B)二0.那么具有CC……C、、、龟lwe百weeeesseeeeeeeeeee()‘’*oC了/了,les诬esesles.ee..l.怪es..、、、 HH…H形式的算子C任R(II,:、,了. 根据引理3.6我们可以找出可逆算子,使得川一(2(H)中的算子相似干一个可约算子,我们得到主要结果 定理3.1,任月I一了2(H).三{H,,}彗.若氏(S)是不连通的,那么s是Ba‘la(·11可约的. 本文还得到关于Co二·(’l1一Dol:glas算子的一结论,设贝是C的一个连通开子集,尽,(卿代表侧H)中的算子且满足 (。,)茵2仁二(B): (b)Rol}(B一入)=H、丫入任贝: (..)V{肠以B一入):入任互砰二H: (d)。11?,,大·。,(B一.\)二,,.丫入任f2.那么称B。(卿中的算子为C二甲。n一Douglas算子. 推论3.1,任111一尸(H).5{H,t}彗.人。任V.S酉等价于(2)的形式,那么有一扩任尽,(贝).其中n为,,,.l(S一入。)的负值. 类似于尽,(贝)本文新定义了一个B二(Q)的概念,提出吉林大学硕士学位论文算子权移位的Bol招曲可约性 问题当S任。,三+戈是否和川一(z(H)时,存在一个连通开集几使得夕任氏;(卿·0<:了(S)>是充要条件呢?
【Abstract】 Lot H denote the complex separable Hilbert space. 2(H)=i=0xH. if {Wi}i=1+x is a sequence of uniformly bounded linear operators on H .S 6 (2(H)) , andthen S is called a unilateral operator weighted shift,denoted by S ~ {Wi} . the set of all this kind of operators is denoted by IW2(H).Particularly,let C be the complex plane.Cn - k=1n, C. 2(Cn) = Cn.then S is called a n-multiple unilateral operator weighted shift . the set of all this kind of operators is denoted by IW2(Cn).Operator weighted shifts form an important class of operators that people are interested in . One pay more attention to them because they are often used to make examples and counter examples, moreover they are closely related with some general problems in operator theory .Let T (H).M LatT. if there exists a N Latr.such that M N = {0} and M + N = H.then we call .M a Banach reducible subspace of T. T is said to be Banach reducible if there exist a nontrivial Banach reducible subspace,if not T is said to be Banach irreducible. T is Banach reducible if and only if there exists a nontrivial idempotent operator that commutes with it, if and only if T is similar to a reducible operator.The problem of operator redudbility pay a significant role in operator theory.When H is a finitely dimensional space, T is strongly irreducible.that is Banach irreducible, if and only if it can be represented as a Jordan block under some OXB,so strongly irreducible operator is a natural generalization in infinitely dimensional space.This idea has been demenstrated being intelligent by Zejian Jiang .Chunlan Jiang and their partners.The forward unilateral scalar weighted shift is strongly irreducible. In[1], Juexian Li proved that if S IW2(Cn). and e(T) is not connected .then Sis Banach redudble.Does this property hold for more extensive operators in IW(’2(H) ? In this paper, we consider this question and give a positive answer. First.for IW 2(H) we prove the following lemmaLemma 2.1 For eachHi, there exists an OXB { } . such that every Wi can be represented asThus, every S IW2(H) is unitarily equivalent to an upper triangular unilateral operator weighted shift.Let V = { : r1 < | | < r2 } F(S) be a hole of (S).hx 0 V.we can obtain an n dimensional OXB of (Ran/(S -0)) restricting on H.Every S ~ {Wi} can be represented as an upper triangular unilateral operator weighted shift under this OXB where every IF, has the form of (1) .Then we can show the followingLemma 2.3 Let S IW2(H).S ~ {Wi}. then S is unitarily equivalent towhere 2(M)).B 2(H M)) are upper triangular unilateral operator weighted shifts with invertible multiplicity.Then by analyzing the relations of position among A0 and .4. B. we obtain.Proposition 3.1 S IW2(H). S ~ {Wi). 0 V. S is unitarily equivalent to the form of (2) .then 0 (B) = (B). 0 > r(B).From lemma 2.3. we may let A IW72(Cn).for the operators in IW72(Cn).we get to the following propositions from some conclusions in [l].Proposition 3.2 5 IW2(H). S ~ {W’i} . A0 V. S is unitarily equivalent to (2). then A0 1(A). 0 < r1(A).For A (H1). B (H2).Rosenblum operator AB is defined on (H2, H1) as TAB(X) = AX - XB. for any A (H2,H1). By using this operator we obtainLemma3.6 .A if 1(A) r(B] = o. then C RanTAB of each operator C of the followingformFrom lemma3.6. we can find an invortible operator such that an operator in IW2(H) is similar to a reducible operator, so we have the main theoremtheorem 3.1 S IW2(H). S ~ {Wi} . if e(5) is not comected.then 5 is Banach reducible.In this paper, we also get some conclusions about the Cowen-Douglas operators, let be a connected open subset of C. Bn( ) denoted the set of operators B in (H) satisfying(a) (B):(b)Ran(B -) = H. :(d) dimker(B - ) = . . Then call an operator in Bn( ) a Cowen-Douglas operator.Corollary3.1 S IW 2(H)..S - {Wi}+ - 0 V. 5 is Militarily equivalent to (2).then A Bn( ).where n is the negative vahie of iucI(S - 0).Analogously. we define a new concept Bx( ).tlie following remainedquestion (1) for 5" G I\V(2(H).th
- 【网络出版投稿人】 吉林大学 【网络出版年期】2004年 04期
- 【分类号】O177
- 【下载频次】27