节点文献

单叶算子的(U+K)-轨道闭包及Putnam-Fuglede定理

The (U+K)-orbit of Univalent Operator and Its Putnam-Fuglede Theorem

【作者】 张敏

【导师】 纪友清;

【作者基本信息】 吉林大学 , 基础数学, 2004, 硕士

【摘要】 设H是可分的无穷维Hilbert空间,L(H)为H上所有的有界线性算子的集合,κ(H)为紧算子理想,(εN)(H)是所有的本性正规算子的集合,我们定义了这样一类算子。 定义 2.1 T∈L(H)∩(εN)(H)称为单叶的,如果存在连通的开集Ω(?)σ(T)∩ρs-F(T),使得 (1)σ(T)=(?); (2)dim ker(T-λ)*=1,(?)λ∈Ω; (3)ker(T-λ)={0},(?)λ∈Ω; (4)(?)λ0∈Ω,使得∩n=1 Ran(T-λ0n={0},且T|ran(T-λ0u+kT, 根据定义2.1有 引理3.1设算子T是单叶的,由定义2.1知(?)0∈Ω,使得T|Ran(T-λ0(u+k)T,则对(?)λ∈Ω,都有T|Ran(T-λ)(u+k)T, 再由文献[6]中的命题2.7以及单叶算子的定义有 引理3.2算子T是如定义2.1的,则对(?)λ∈Ω,都有λI′(?)T∈(?),这里I′为一维空间上的单位算子。 由引理3.1及数学归纳法有 推论3.1设{λ1,…,λn}(?)Ω,且λ-i≠λj,i≠j,则有 T|((Vi=1n{ker(T-λi*}))≌u+kT, 考虑T在分解H=(Vi=1n{ker(T-λi*})(?)(Vi=1n{ker(T-λj*})上的表示,再利用有限维矩阵的性质可以得到 推论3.2设Fd是以{λ1,…,λn}(?)Ω为对角线元的对角阵,则存在一个算子C,使得 T≌u+k(?) 吉林大学硕士学位论文我们得到推论3.3算子T是如定义2.1中的单叶算子,F是有限维空间上的算子,且a(F)〔.,则有FOT任(U十尤)(T). 与 子 算 八习 .自口、、、,...,Z弓.理。.。设二是,*维又寸角阵,形女。。一f式了 、‘毛,洲u+胡一相似当且仅当凡的对角线元林l,…,凡,}。贝,不相同,伪,的第、列不在R。叹T一凡I)里,1三*兰,2.Fti())算子,做个小扰动,可使得姚:的第*列不姚IT/了矛!、、飞 一一 C 如 形在几州T一入:)里,在根据引理3.;推论3一形女口一(凡()姚IT)有算子,这里Fti是有限维对角阵,对角线元互不相同,且都在几里,则c钊u+门(T). 由BDF定理,谱的上半连续性,推论3.1,划等,我们可以得到 定理2.1设T是如定义2.1的单叶算子,则(u+门(T)={A。£(万):A是本性正规的,且满足(、)(**)(、、*)}, (,).二(A)=‘2; (乞乞).二。(A)=Jg之; (乞z乞).乞,“l(A一入)=一1 .V入任百2. 由定理2.1立即可以得到 定理2.2T与s是近似相似的两个单叶算子,则有T与s是近似(u+均一等价的.特别的,如果T与s是相似的,也有T与s是近似(u+均一等价的. 类似引理3.1的证明,利用解析函数的性质可以得到定理2.3 定理2.3设T是如定义2.1的单叶算子,则必有一个单位圆盘D内的单叶解析函数。,使得兑〔!l( D)c彭,这里彭表示的是豆的内部.吉林大学硕士学位论文 由定理2.3易得如下两个推论 推论2.1设T是如定义2.1的单叶算子,若有以任优,,灭祥二。(尹),则蛇一定是单连通的. 推论2.2设T是如定义2.1的单叶算子,若有几一彭,彭表示瓦的内部,则几一定是单连通的. 利用推论2.2我们得到 命题3.1两个本性正规算子相似,不一定有他们是(u+门一等价的. 所以定理2.2中,我们不能用(u+门一相似,而用近似(“+门一相似.这也说明了(u一十们一等价分类是比相似分类更细的分类. 在文献[ls}中,定义一了类单边移位算子,并考虑了单边移位算子与类单边移位算子的(u+均一轨道闭包,结论是他们的(l1+门一轨道闭包相同.这里我们同样也给出类单叶算子的定义. 算子s。侧川川:N)(II),称为类单叶的,如果存在单连通的开集‘ZC。(s)自户、一。(S),使得 (1)。(S)=百2; (2)d该,;‘k(:r(S一入)*=1,V入任人2; (3)ker(S一入)={O},V入任公2; (4)己入。任‘老,5 .t·S},、u,‘(、一入())望;,十、S· 问题:如果T是单叶算子,£是相应的类单叶算子,那么T是不是在i百不画画里呢?

【Abstract】 Let H be an infinitely dimentionai Hilbert space,and denote by (/f)the set of all linear operators acting on H.K,(H) denotes the ideal of compact operators on // and (sN)(H) denotes the set of essentially normal operators. We defined this kind of operator.Definition 2.1 T 6(H) f](sN)(H) is called nnivalent operator, if there exists connected open set, (2)dimker(T - A) = 1. VA 2; (3)ker(T- A) = {()},VAe JJ;(4)3A0 ,s.t.fXL, Rnn(T - A0)" = {0},and r|/?n,l(r_A()) =. T. From Definition 2.1, we haveLemma 3.1 Let T be univalent operator as 2.1, then1 exists a AO e JLs.t. m(r-A) +A: T,tlien for all A we have T|, T. From proposition 2.7 of [6] and the definition of univalent operator Lemma 3.2 T is given by Definition 2.1, then for all A T e(/C)(T) hold, here / is the identity operator acting on one-dimensional space.From Lemma 3.1 and induction,we obtainCorollary 3.1 Let {A,, ,Xn} C Q,and A, Ay j.When T is restricted to the invariant snbspaoe formed by (,s’pan{ker(T - A,7)}f=, J.then the resulting operator is (U + /C)-similar to T.Considering the representation of T on H = (v;.’=1 {ker(T-A,)})(B(v; {ker(T-A,;)})x.using property of finite dimensional matrix, we haveCorollary 3.2 Let F,i be a diagonal matrix {A). , A, C il. then there existsoperator C,s.t.I Fd 0T I C T We have Corollary 3.3 If T is a univalent operator as 2.1.F is an operator on a finitedimensional space, whose spectrum subsets SJ,thon F T(U + K.)(T). Lemma 3.3 An operator of the formFd 0 C-2, Twhere F,i is a diagonal matrix is (U + /C) -similar to T if and only if the diagonal entries { A] n } C J2. are distinct and the ith column of Ci is not in R(i:n,(TAj/),l i n.( Fd 0 \ An arbitrarily small perturbation of C = will g(;t the ith column\C,t T)of C’2\ out of range (T ?A,;/). Then by the Lemma 3.3,we haveCorollary 3.4 If C is an operator of the formc= FT whore F,/ is a diagonal matrix with distinct diagonal entries in SJ , then C €By BDF Theorem,the upper semi-continuity of the spectrum,and Corollary. 1, 3.4,we can obtainTheorem 2.1 Let T be univalent operator as 2.1, then (U + K,)(T) = {A 6 L(//);A is essentially normal and satisfies (i)(ii)(ni)}. (i).rr(A) = JI; (’m).ind(A - A) = -1, VA H.By Theorem 2.1 we can obtainTheorem 2.2 T and 5" arc two nnivalent operators .T is approximately similar to S1, then T and S are approximately (ZY + /C) similar. Particularly T and 5 are two similar nnivalent operators, then T and S are approximately (U + /C)similar.Similar to the proof of Lemma 3.1,using the properties of analytic function we can getTheorem 2.3 Let T be univalent operator as 2.1,then there exists / which is an nnivalent analytic function on unit disk D.s.t.li C )(D) C O , here il denotes the interior of J7.From Theorem 2.3 we can concludeCorollary 2.1 In Definition 2.1 if for all A 6 dil.X rrp(T),then II must be simply connected.Corollary 2.2 In Definition 2.1 if il ~ il , then ii must be simply connected.Proposition 3.1 Two essentially normal operator are similar, we can’t conclude they are (U + K.) - similar.So in Theorem 2.2 we can’t use (14 + 1C)similar, but approximately (U + /C) similar instead. So the partition by (U + 1C)similar equivalence is finer than that of similar equivalence.In [13].it defined a kind of operator called shift-like , and proved TheoremrSupposeT is a shift-like operator,.? is the unilateral shift, then (U + K,)(T) = (U + K.)(S). Here we will give the definition of univalent-like operator.5 6 (H) D (eN)(H).is called univalent-like operator if there exists simply connected domain il C a(S) n/t//(5), s.t.(l)a(S) =Tl:(2)dijikn-(S - A) = LVA 6 H:(3)kor(S- A) = {()},VA eH;(4)3A0 Question: If T is an univalent operator,5 is a univalent-like operator corre--spondingly. then whether or not T is in (U + K,)(S)

【关键词】 单叶算子(u+κ)-轨道
  • 【网络出版投稿人】 吉林大学
  • 【网络出版年期】2004年 04期
  • 【分类号】O177
  • 【下载频次】25
节点文献中: