节点文献

蒎烷—α-蒎烯—长叶烯体系汽液平衡的研究

Study on Vapour-Liquid Equilibrium for Pinane-α-Pinene-Longifolene System

【作者】 祝远姣

【导师】 陈小鹏; 童张法; 王琳琳;

【作者基本信息】 广西大学 , 化学工艺, 2003, 硕士

【摘要】 采用液相和汽相冷凝双循环实验方法、单纯型搜索优化模型参数的数据处理方法研究了松节油加氢反应产物—蒎烷—α-蒎烯—长叶烯体系的汽液平衡,建立其相平衡数学模型,为氢化松节油体系的精馏分离过程开发提供理论依据和基础数据。本文工作主要包括以下内容: 以Raney镍为催化剂,在温度353~433K、压力3.0~7.0MPa的条件下由α-蒎烯催化加氢制备实验原料蒎烷,并用GC—MS法对加氢产物进行定性定量分析,结果表明蒎烷浓度高达99.5%,从而解决了市场上买不到高纯度蒎烷的难题。 使用BP×5化学结合相熔凝硅石英毛细管柱(30m×0.32m×0.25μm)对氢化松节油进行气相色谱分析,确定其色谱条件为:二阶程序升温338K 363K 423K(5min),载气:氮气,柱前压:0.07MPa,载气流量:45mL·min-1,空气流量:300mL·min-1,氢气流量:30mL·min-1,分流比50:1,尾吹流量:24mL·min-1,检测器温度:523K,汽化室温度:523K,进样量:0.2μL。并用气—质联用和标样相结合对其进行定性定量分析,结果表明其主要成分为α-蒎烯、顺式蒎烷、反式蒎烷、长叶烯等。 采用改进的Ellis平衡釜和毛细管气相色谱分析方法,在59.34~100.58kPa压力条件下分别测定了高浓度蒎烷421.23K~441.06K和高浓度长叶烯体系501.19K~527.55K的汽液平衡数据,根据稀溶液的溶剂符合 Raou定律的规则,由 Raou定律计算出上述实验温度下猿烷、顺振烷和长叶烯的饱和蒸汽压,然后使用 EV EWS数理统计软件分别回归出振烷、顺振烷和长叶烯 Auto i ne方程 A、B、C参数:从而建立了振烷、顺式菠烷和长叶烯的饱和蒸汽压与温度的关联式,对菠烷有.,。_______、__325.7533 n—n onnc.. o.aac .caa i..a’n .n..11呷川刀删33卜二99577一一二二二二二二一,代厂)二J口J J J,DI一o二J.川*o,yi一’o DJ人J门; T.319.习97一=斗lllF三卜丈主,卜b一写.._。_____。_____321.88忍gi_i n., on’ o_on’ orinriy’JlllWTh})RinM IdP:/0.000133)=9.271801—AIAi,HZ一口.二IIOUI.DZ一OLI.000d. T一319力co矿、_OI矿、川tt 口卜早上土*oh1三三哆写,_。_______、_____3.6946o 0_C nlnloV,一一Old.4VV:J’J WHTWM In(P/0.000133k5.97818—AIAi,Ha一口.SIOIO. T—533714Bs=3.69460,C。二-533.714;其计算饱和蒸汽压的相对误差范围为0.046~0.18儿 并与对应态基团贡献法估算的振烷饱和蒸汽压作了比较。 采用改进的 EI is平衡釜测定了振烷一。-振烯、a-菠烯一长叶烯、振烷一长叶烯三个二元体系及振烷一a-菠烯一长叮烯三元体系常压汽液平衡数据,并经 Her i ngton规则检验,结果表明符合热力学一致性。分别用 W if son和 NRTL模型对三个二元体系汽液平衡数据进行了关联,得到了相应的能量参数。对 W if son 方程有:a-振烯(1)-菠烷Q)体系,g;。-g;;一2426.112,g。;一g;,一1740.312;Q一蒲烯(1)一长叶 烯(2)体系,*;。一g;.一 2397.481,g;,一g;;=一2931 二11;]&烷(1)一W叶烯(2)体系,*;;一*;一 3806.733,g;;一g;;一3935.258。对NRTL 方程有:Q一派烯(1)一振烷(2)体系,g;。一g;;-2129.999,g;;一g;;一2644.614;Q一振烯(1)一长叶烯(2)体系,g;。-g;;一2176.757,g。;-g;;=1630.902;派烷(1)一W叶烯(2)体系,g;。-。;;=一3023.122,g;;寸;;158。兆。(J.mol”‘卜并且使用 H元川 l SOn参数对所测的三元数据进行了推算,计算结果与实验值的平均偏差为0.0027。

【Abstract】 The vapor-liquid equilibrium for products of turpentine hydrogenation i.e. pinane- -pinene-longifolene system was investigated by using experimental method with vapor-liquid alternative circulation and data processing method of simplex-search, and the mathematic model for rectification has been built. Theoretic fundament and basic data for development of rectification and separation of hydrogenated turpentine system were provided in this paper. This paper covers the contents as follows:The experimental raw material pinane was prepared by catalytic hydrogenation of a -pinene at temperature 353-433 K, pressure 3.0-7.0 MPa, using Raney-nickel as catalyst and a -pinene as raw material, and qualitative and quantitative analysis for the products of hydrogenation was carried out by GC-MS method, the results shown that concentration of pinane was up to 99.7%.The hydrogenated turpentine was analyzed by gas chromatograph, using BP 5 boned phase, fused silica capillary column (30m 0.32mm 0.25 m), and the gas Chromatography conditions have been considered, the temperature program was as follows: 338K for o min, then 1K-min-1 to 363K, and finally 20K-min-1 to 423K, holding for 5 min. Nitrogen was used as gas carrier, the pressure before column was 0.07MPa, and the flow rate of carrier gas was 45mL-min-1. The flow rate of air was 300 mL-min-1; the flow rate of hydrogen was 30 mL-min-1; split flow ratio was set at 50:1; the flow rate of tail gas was 24 mL-min-1; The temperature of injector and detector was 523K. sample introdution was 0.2 L. The identity of the components was established by comparison of their GC-MS fragmentation patterns with those authentic samples, the results shown that the main components of hydrogenated turpentine were as follows: -pinene, cis-pinane, trans-pinane and longifolene.The vapor-liquid equilibria of high concentration pinane system in the temperature range of 421.23K~441.06K and high concentration longilofene system in the temperature range of 501.19-527.55K were determined respectively at pressure ranged from 59.34 kPa to 100.58kPa by using the modified Ellis still and capillary tube gas chromatograph analysis method. Based on the regulation that the solvent in dilute solution according with Raoult’s law, the saturated vapor pressures of pinane, c/s-pinane and longifolene at experimental temperatures were calculated by Raoult’s law, respectively, and their Antoine parameters(A,B,C) have been attained by regression, so that the correlations between saturated vapor pressure and temperature for pinane, c/s-pinane and longifolene weredescribed as follows: pinane(l), In(P1S/0.000133)= 9.299577- , A,=9.299577,B1=325.7533, C1=-319.4974 ; cis-pinane(2), In(P2S / 0.000133)= 9.271801 - ,A2=9.271801, B2=321.8889, C2=-319.400; longifolene(3),ln(P3S/0.000133)= 5.97818- , A3=5.97818, B3=3.69460, C3=-533.714, and the relativeerror was around 0.046~0.18%, and the saturated vapor pressure of pinane calculated was compared with value estimated by corresponding state group contribution method.The vapor-liquid equilibrium data for three binary systems of pinane- a -pinene, a -pinene-longifolene and pinane-longifolene and one ternary system of pinane- a -pinene-longifolene were determined at 0.1013MPa by the modified Ellis still. The thermodynamic consistency test indicated that the experimental data of three binary systems were reliable. The data were correlated by Wilson and NRTL equation, and the energy parameters have been obtained as follows: Wilson equation, -pinene(1)-pinane(2) system, g12 -g11 =2426.112 , g21-g11 =-1740.312 ; -pinene(1)-longifolene(2)system, g12 -g11 =2397.481 , g21-g11 =-2931.211 ;pinane(1)-longifolene(2) system,g12 -g11 =3806.733 , g21 -g11 =-3935.258 , NRTL equation, -pinene(1)-pinane(2) system, g12 -g11 =-2129.999 , g21 -g11 =2644.614 ; -pinene( 1 )-longif

  • 【网络出版投稿人】 广西大学
  • 【网络出版年期】2004年 01期
  • 【分类号】O642.4
  • 【被引频次】3
  • 【下载频次】204
节点文献中: