节点文献
LMI在一类模糊控制系统稳定性分析中的应用
【作者】 裴越;
【作者基本信息】 南京理工大学 , 控制理论与控制工程, 2002, 硕士
【摘要】 线性矩阵不等式(LMI)方法是一种凸优化方法。由于内点法等算法日益成熟,并成为解决LMI问题的强有力的工具,线性矩阵不等式方法在控制理论中得到了越来越广泛的应用和发展。T-S模型是模糊控制方法中最流行的和最有发展前途的研究平台之一,而模糊控制系统的稳定性分析和设计方法一直是最重要的研究课题。本论文在归纳了线性矩阵不等式的特点和应用,总结了模糊系统稳定性分析的方法后,利用线性矩阵不等式(LMI)和并行分布补偿原理,针对非线性系统的T-S模型,提出了新的模糊控制系统的稳定性条件和分析方法。仿真结果验证了该方法的有效性。
【Abstract】 In this paper, it is studied to use Linear Matrix Inequality (LMI) in fuzzy control field. As a convex method, LMI becomes more and more important in control field. First, this paper summarizes characteristics and uses of LMI. Then this paper concludes the methods in analyzing stability of fuzzy system. At last, this paper is concerned with the quadratic stability conditions of T-S fuzzy control systems that relax the existing conditions. New approaches to relaxed quadratic stability and stability conditions of fuzzy control systems are suggested. The new approaches relaxed the conservatism of the previous works by considering the interactions among the fuzzy subsystems hi a matrix and solving it via linear matrix inequalities. The examples and simulations can demonstrate the efficiency of the new approaches.
【Key words】 Linear Matrix Inequality (LMI); fuzzy control system; T-S model; stability condition; Convex optimizes;
- 【网络出版投稿人】 南京理工大学 【网络出版年期】2002年 02期
- 【分类号】TP273.4
- 【被引频次】1
- 【下载频次】250