节点文献

数据挖掘技术在移动商务客户价值识别中的应用研究

Applied Research on Using Data Mining Technology in the Mobile Business Customer Value Identification

【作者】 陈春茶

【导师】 翟大昆;

【作者基本信息】 云南大学 , 技术经济及管理, 2012, 硕士

【摘要】 当前计算机技术已经发展到了移动互联网时代,这意味着将有超过10亿的用户和智能设备,能够随时随地接入网络当中进行信息的交互,且移动互联网终端将成为人们获取信息和分享个人知识的重要窗口,在移动终端上也将应运而生各种各样的商业产品。伴随着移动互联网随时获取和分享知识重要性的不断增加,如何更好地服务与吸引客户,提供客户真正需要的产品,以及发现客户的潜在需求,这已成为众多商家们研究的热点问题。为了深入研究移动商务市场的客户价值,本文使用数据挖掘技术的决策树(C5.0)和关联规则(Apriori)方法,对移动商务的客户价值及商业价值进行研究,从而判断哪类人群是高价值客户,识别出高价值客户人群所具有的特征,从而为企业进一步开展客户营销,更好的抓住目标客户,提供一种便于操作、可行的方法。识别出移动商务当前和潜在高价值客户人群及其所具有的特征,这一决策模型可以为移动商务价值链上的利益群体提供决策。首先运营商要创新渠道模式,创造一个让用户了解并满足顾客需求的体验价值平台。再者,内容提供商要为目标客户群提供契合度更高、更丰富的产品内容,只有提供了好的内容才能够吸引更多的用户,也只有用户通过对内容的体验才能增加对移动商务的认识,才能进一步促进移动商务的发展。总之,本文只是数据挖掘技术在移动商务应用中的一个缩影,可以进一步延伸移动商务价值链上的商业潜力。在价值链的各个环节都可以使用数据挖掘技术来挖掘其潜力及价值,从而更好地服务移动商务客户,开发客户所需要的产品。

【Abstract】 Current computer technology has developed to the mobile Internet era, which means that there will be over one billion users and intelligent devices, anytime, anywhere access network which the interaction of information. Mobile Internet devices will become the way people obtain information and important window that people share their personal knowledge. Moreover, on the mobile terminal will emerge a variety of commercial products. Along with the importance of access and share knowledge on mobile Internet is increasingly rising, how to better serve and attract customers, providing customers really need, and the discovery of potential customer needs, which has become a hot issue for many businessmen. For in-depth study of the customer value of mobile commerce market, the article uses decision tree (C5.0) and association rules ((Apriori)) of data mining technology, research on customer value and business value of mobile commerce in order to determine which groups is high-value customers, and then, to identify the main features of high value customers, beneficial to enterprise further development of customer market, to better grasp the target customers, as well as provide an easy operation and feasible method. Identify the current and potential high-value customer groups and their characteristics, this decision-making model can provide decision for value chain and interest groups of mobile commerce.Firstly operators need to create a innovative channel model, to create experience platform that user can better understand and meet customer needs. Furthermore, the content providers need to provide a richer and better content with target customer. Only provide the enough good product for the user, the user will have a better experience and can increase the content of mobile commerce understanding and further promote the development of mobile commerce. In short, this paper just is a microcosm of mobile business applications by using data mining technology. We can further extend this method to the all aspects of the value chain of mobile business. In the whole process of value chain of mobile business can use data mining techniques to exploit its potential and value and then can better serve for the mobile business customers, develop product that customer better need.

  • 【网络出版投稿人】 云南大学
  • 【网络出版年期】2012年 10期
  • 【分类号】F626;TP311.13
  • 【被引频次】2
  • 【下载频次】369
  • 攻读期成果
节点文献中: