节点文献

基于Q学习的多路口交通信号协调控制研究

Based Q-iearning in Traffic Signal Control of Multiple Intersection

【作者】 韦钦平

【导师】 沈文; 卢守峰;

【作者基本信息】 长沙理工大学 , 交通运输规划与管理, 2012, 硕士

【摘要】 交通问题已经成为制约城市发展经济的主要瓶颈,解决交通拥挤己经迫在眉睫,而城市空间的有限性和其他经济、环境等因素阻碍交通基础设施的扩展。引进人工智能、计算机仿真等高新技术,来解决城市交通的拥挤和堵塞问题,已经成为交通信号控制的研究热点。本文简要概述了信号控制的发展现状及Q学习理论之后,对重点针对Q学习理论应用于交通信号控制进行研究。一方面,是基于Q学习理论的绿灯时间优化的研究。针对固定周期和可变周期两种模式下的单路口信号配时优化进行研究,构造了等饱和度和延误最小为优化目标的奖赏函数,建立了两种优化目标的离线Q学习模型。通过VBA及Matlab编程实现算例,对4种离线Q学习模型的解的结构、最优解的分布进行分析,探讨离线Q学习优化模型在交叉口信号控制的适用性,最后将最优解应用到VISSIM实时交通控制中,并与经典Webster算法进行对比,结果表明Q学习绿时优化算法具有很强的优越性。另一方面,是基于Q学习理论的多路口相位差优化研究。针对固定周期模式下的多路口相位差优化进行研究,以集成VISSIM-ExcelVBA-Matlab的仿真平台为技术平台,采用VBA及Matlab编程建立了延误最小为优化目标的离线Q学习模型,然后将最优解应用到VISSIM实时交通控制中,并与MAXBAND进行对比,结果表明Q学习相位差优化算法具有很强的优越性。同时,为了构建算法研究的实验条件,对集成Vissim-ExcelVBA-Matlab的仿真平台研究,综合VISSIM可靠的微观交通流仿真能力、ExcelVBA高效的编程效率和数据通信能力以及MATLAB实现复杂智能交通控制算法的能力,通过VISSIM-ExcelVBA接口技术、ExcelVBA-MATLAB接口技术构建了交通控制实时仿真平台。最后对研究工作进行了总结,提出了需要进一步深入研究的问题。

【Abstract】 The traffic problem has become a major bottleneck to restrict the urban’seconomic development, to solve the traffic congestion already imminent, the limitednature of urban space and other factors, such as economic, environmental, etc, thathinder the expansion of transport infrastructure. The introduction of artificialintelligence, computer simulation and other high-tech, to solve urban trafficcongestion and congestion, has become the hot spots of traffic signal control.In this thesis, after a brief overview of the signal to control the developmentstatus and Q-learning theory, focusing on the Q-learning theory applied to the trafficsignal control. On the one hand, is the green time optimization based on theQ-learning theory. For a fixed period and variable cycle two modes of singleintersection signal timing optimization study, construct saturation and delay minimumas the optimization objective reward function, established the two optimizationobjectives off-line Q-learning model. Through the VBA and Matlab programsexample, the thesis analysis the structure of the solution and the distribution of theoptimal solution of the4kinds of offline Q-learning model, and discusses theapplicability of offline Q-learning optimization model in the intersection signalcontrol. Then, the optimal solution is applied to real-time traffic control in VISSIM,and compared with the classical Webster algorithm, and the result shows that theQ-learning green optimization algorithm has very strong superiority.On the other hand, this thesis is based on the Q-learning theory at the manycrossroads optimization phase difference. This thesis studied optimization phasedifference for a fixed period mode, and integrated VISSIM-Excel and VBA-Matlabsimulation platform as technology platform.And this thesis taked VBA and Matlabprogramming,established offline Q-learning model,and taked the minimum delay asoptimal objective. Then the optimal solution is applied to VISSIM real-time trafficcontrol, and compared with MAXBAND, the results indicated that the Q-learningphase difference optimization algorithm has the very strong superiority.At the same time, in order to establish experimental condition of the algorithms,the thesis researched the integrated Vissim-Excel VBA-Matlab simulation platform,comprehensive the ability of the Vissim reliable microscopic traffic flow simulation,Excel VBA efficient programming efficiency and data communication ability, and Matlab complex intelligent traffic control algorithm.Through the Vissim-Excel VBAinterface technology, the thesis built traffic control real-time simulation platform. Atlast, the thesis summarized the work and put forward the problems that is need to befurther studied.

节点文献中: