节点文献

基于多支持向量机融合建模的直线电机结构设计研究

Research of Structure Design of Linear Motor Based on Multiple Support Vector Machine Fusion Modeling

【作者】 陈涛

【导师】 赵吉文;

【作者基本信息】 安徽大学 , 检测技术与自动化装置, 2011, 硕士

【摘要】 数控机床在对于提高我国的钢铁经济效率中占据了一个非常重要的地位,而直线电机又是数控机床中的一个非常重要的一部分。直线电机是一种新的研究方向,由于其进给速度范围宽、速度特性好、加速度大、定位精度高、结构简单、运动平稳、效率高、使用寿命长、安全可靠等优点,在数控机床进给系统中得到了推广应用。直线电机的结构优化是实现进给系统高速驱动的关键问题,对提高其推力品质具有重要理论和实践意义,直线电机也正是由于其结构的多变性,成为如今社会中各种领域所研究的对象。本文主要是围绕直线电机,对其结构进行研究建模,围绕该高效模型的参数进行各种优化,再对优化结果进行比较,深入研究电机的结构。本文主要研究内容如下:一.研究多支持向量机融合建模方法以单支持向量机建模方法为元件和基础,研究多支持向量机融合建模方法,对直线电机进行建模,建立出的高效模型具有单支持向量机模型所不具有的“多输入多输出”性能,同时也具有非常好的计算效率,是研究直线电机结构优化的重要理论前提及保障。二.直线电机模型的实际验证直线电机的有限元模型已经得到了实际验证,本文在此将多支持向量机融合方法得出的模型与有限元模型进行比较,通过推力与电流的比较,证明了该模型的正确性。三.直线电机模型参数的优化分别对直线电机模型的参数进行粒子群优化算法与差分进化算法进行优化,得出直线电机模型的最优参数,进一步验证了多支持向量机融合模型的正确性以及直线电机推力品质的提高。四.提出退火差分进化算法近年来所常用的粒子群优化算法与差分进化算法其实并非本文最理想的优化算法,本文在此提出一种新的优化算法,将模拟退火与差分进化算法进行融合得出一种新的优化算法,同时具有模拟退火算法的全局最优特性以及差分进化算法的高效计算特性,并且进一步得出了直线电机模型的更优参数值。综上所述,本文采用多支持向量机融合方法对直线电机进行建模,分别进行实际验证,再对模型的参数进行优化,得出直线电机的最优参数。

【Abstract】 Nc machine tools occupies a very important position to Enhance China’s steel economic efficiency, and the linear motor is a very important part of nc machine. Linear motor is a kind of new research direction, because of its wide range, feeding speed, acceleration velocity characteristic, higher precision and simple structure, smooth movement, high efficiency, long service life, safe and reliable. It gets a widely application in the numerical control machine tool feeding system. Structure optimization design of linear motor is the key problems of realizing the feeding system and high-speed drive, it has the important theoretical and practical significance to improve its thrust the quality. Because of structure’s polytrope, linear motor becomes the various field today. This article around the structure of the linear motor surrounded the efficient and parameters of the model optimization, and pay more attention of motel structure, which include several sections as following:Firstly, study M-SVM method. We learned the M-SVM model for the Basic of the single SVM. Efficient model of linear motor also has a Multiple-input and multiple-output function, which single SVM model doesn’t have, and computational efficiency. It is very useful to study the structure optimization of linear motor.Secondly, the actual test of the linear motor M-SVM model. We have an actual test of linear motor FEM model. And will compare with FEM model for the thrust and current. And the result is that M-SVM model also can pass the actual test.Thirdly, both the PSO and DE algorithms are used for linear motor model. The structure parameters of linear motor model approve that the rapid calculation model of linear motor is established and the model’s accuracy together with efficiency is verified. Fourthly, both the PSO and DE algorithms are not the best algorithms, and this article has another algorithm which is mixed by SA and DE algorithms. This algorithms has all of the two algorithms functions, global optimum and high efficiency. And it also produces a better structure value.In short, this article uses M-SVM to have a model of linear motor, and then make an optimization of the model structure parameters.

  • 【网络出版投稿人】 安徽大学
  • 【网络出版年期】2012年 04期
  • 【分类号】TM359.4;TP18
  • 【被引频次】1
  • 【下载频次】95
  • 攻读期成果
节点文献中: