节点文献
分布式发电及其对配电网潮流影响的仿真分析
Distributed Generation and Its Impact on the Distribution Network Power Flow Simulation
【作者】 武亚非;
【导师】 杨丽徙;
【作者基本信息】 郑州大学 , 电力系统及其自动化, 2011, 硕士
【摘要】 随着节能减排工作的深入,环境保护的日益重视,能源的日渐枯竭,分布式发电以其清洁环保等优势发挥着越来越重要的作用,同时分布式发电的数量越来越多,容量也越来越大,使得分布式发电不再局限于单独的自给自足,而是形成大型风电场或光伏电场发电并入电网。分布式发电并入电网,不可避免的会对原有的电网产生一定的影响,这些影响包括对潮流,电能质量,继电保护,网损,安全可靠性等的影响。本文主要研究分布式发电并入电网对潮流的影响;潮流计算是电网的基础计算,也是评估电网的一个重要指标和基础。分布式发电并入电网的方式不同,不同的电机并入电网的方式也不同,在分析具体电机的基础之上分析其并网方式,进而分析对电网的影响大小,尽可能的趋利避害。本文主要研究了分布式发电中规模较大的风力发电和光伏发电及其对于电力系统潮流的影响。主要做了三个方面的工作:一是风电场环境和光伏电场仿真分析环境的生成,根据给定分析区域的经度和纬度,在美国航空航天(NASA)网站上查出每年每月的平均风速和光照强度,将这些基础数据带入HOMER软件,即可仿真生成当年每天每整点时刻的风速和光照强度。二是构建了风力发电和太阳能光伏发电的电源模型,特别分析了双馈变速恒频风力发电机的电源特性,拟定了仿真分析过程中的电源处理方案。三是确定了考虑分布电源出力不确定性的两阶段潮流计算方法。构建了包含双馈风电机组的风力发电模型,光伏电池模型,利用应用相对成熟的HOMER软件以及PSASP软件进行环境仿真和潮流计算,具有以下一些优点:方法简单、性能良好、计算速度快、可靠性高;解决了风电场环境的生成,光伏电池的环境生成,包含随机性以及不确定性的风电机组和光伏电池的配电网的运行模拟问题。以IEEE14节点标准系统为基础,依次加入风电机组、光伏电池以及风电机组和光伏电池的组合进行运行模拟。结果表明,加入风电机组和光伏电池,可以提高配电网电压的质量,也使得潮流的分布更合理。
【Abstract】 With the energy saving depth, environmental protection, increasing attention, the gradual depletion of energy, distributed generation for its clean and environmental protection advantages is playing an increasingly important role, while the number of distributed generation is increasing and the capacity is also more and more, making the distributed generation is no longer confined to a separate self-sufficient, but the formation of large-scale wind farms or photovoltaic electric power grid.Distributed generation into the grid will inevitably have some impact to the original grid, including the power flow, power quality, protection, network losses, the impact of such security and reliability and so on. This paper studies the trend of distributed generation on the impact of the grid power flow; power flow calculation is the basis of grid computing, and is also an important indicator and infrastructure to evaluation grid. Distributed generation into the grid in different ways, different motors into the grid in different ways, based on the analysis of specific motor analysis the grid way, and then analyzes the impact on the grid size, reduce as much as possible to avoid disadvantages.This paper studies the large-scale distributed generation of wind power and photovoltaic power systems and the impact of the power flow. Three main aspects of the work have done.First, generate the wind electric field and solar photovoltaic field simulation environment, according to the given latitude and longitude of the region, in the National Aeronautics and Space (NASA) Web site found the average monthly wind speed and light intensity of one year, when take these basic data into the HOMER software, simulation can generate that year every moment of every day the wind speed and light intensity.Second, build the wind power and the solar photovoltaic power models, Specially, analysis of the doubly-fed variable speed constant frequency(VSCF) wind turbine power characteristics, draft the power handling program during simulation. Third, considering the distribution power output uncertainty of two-phase flow calculation method.Construct containing the double-fed wind turbine wind power model, photovoltaic cell model, using relatively mature software PSASP and HOMER to achieve distribution network with distribution power flow calculation and environment simulation, which has the following advantages:simple method, good performance, fast calculation speed and high reliability; solve the environmental wind generation and photovoltaic cells, including the randomness and uncertainties of the wind turbine and photovoltaic cells for the operation of distribution network simulation problems. Based on the node of IEEE14 standard system, followed by adding wind turbines, photovoltaic cells and wind turbines and photovoltaic cells to run a combination of simulation. The results showed that adding wind turbines and photovoltaic cells, can improve the quality of the voltage distribution network, and make the trend of the distribution is more reasonable.
【Key words】 distributed generation; power flow calculation; wind power; solar power; biomass power generation;