节点文献

刚体姿态控制驱动器失效补偿研究

Actuator Failure Compensation for Attitude Control of Rigid Body

【作者】 边惠惠

【导师】 王中华;

【作者基本信息】 济南大学 , 控制理论与控制工程, 2011, 硕士

【摘要】 随着科学技术的发展,对刚体姿态控制问题的研究主要分为建模方法的研究以及各种控制策略的研究。目前国内外主要是在刚体三轴驱动的前提下对刚体姿态进行研究,其驱动器通常由分别控制三个主轴的喷气推力器或者动量飞轮装置组成。当刚体长时间在空间运行的时侯,由于燃料的消耗、润滑、元/器件的老化等原因,都有可能造成某一轴的驱动器卡死甚至完全的失效,这样就使得刚体的动力学性能发生改变。而这种驱动器失效有很大的不确定性,其失效方式及其哪一轴的驱动器失效都是不知道的。如果驱动器失效得不到有效的补偿,刚体的工作寿命可能终结,继而造成巨大损失。刚体驱动器失效的补偿方法通常有两种:一种方法是从硬件设计上考虑,在每个主轴都配上冗余的备用驱动装置,这样一旦某一驱动器不能有效的工作,备用的马上投入工作。但是这种方法使得刚体的重量增大,从而会增加发射的成本。另一种方法则是用控制理论算法来进行补偿,在设计刚体的控制器时考虑到可能的某个控制器失效,采用三轴动力学耦合的特性,来达到在驱动器失效的状况下姿态控制的目的。后者无需额外进行投资,所以,研究刚体姿态驱动器失效补偿算法具有理论及其工程实践的重大意义。本论文以非对称性刚体为控制对象,研究刚体姿态控制驱动器失效补偿策略,所完成的工作主要包括以下几个方面:第一,通过阅读大量的文献,本文阐述了驱动器失效刚体控制系统在运动学和动力学及其系统的控制策略方面的主要研究成果及其尚未解决的问题。对刚体姿态控制系统的控制方式和控制规律进行了描述,并总结了驱动器失效刚体姿态控制的国内外研究现状,分析了现今刚体的姿态控制领域所存在的诸多问题,最后提出了本论文的研究目标。第二,采用经典Newton-Euler方法建立了驱动器失效刚体姿态控制的动力学模型。并对描述刚体姿态的欧拉角参数法、四元数法、Rodrigues参数法及(w, z)参数化法进行了总结比较,分析其奇异性和数学特点,建立系统的数学模型。第三,在刚体驱动器正常工作的条件下,提出了基于滑模控制方法的控制策略,给出了该控制策略的设计步骤,并应用李雅普诺夫理论进行了稳定性分析,仿真结果验证了所设计控制策略的有效性。第四,对某一轴驱动器失效的刚体模型,采用滑模控制方法设计周期性连续时变反馈控制律,使欠驱动刚体的姿态和角速度都趋于平衡状态,进行仿真验证,结果表明所设计的控制策略满足预期要求。第五,对某一轴驱动器失效的刚体模型,采用自适应与滑模相结合的方法,设计了滑模自适应控制律,并证明了系统的稳定性,仿真结果验证了所设计控制律的有效性。在本文的最后,进行分析了文章中的控制方法,并进一步分析了各个控制方法的优缺点。并在此基础上,得出了本论文下一步的研究方向。

【Abstract】 With the development of science, the research on attitude of rigid body can be divided into research on modeling and control methods. At present, study on the attitude of rigid body is mainly on three-axis drive. The actuators are made up of jet thrusters or momentum fly wheel devices. When spacecraft flying, its devices maybe braking- stuck, even failure completely due to fuel consumption or lubrication, thus make its dynamic performance change. The actuator failure has uncertainties, failure mode and which actuators are unknown. If the disabled actuator can not be compensated, the spacecraft maybe end, and case great loss.Actuator failure compensation usually has two compensation methods. One method is hardware design, each axis is equipped with redundant backup device drivers, once a driver cannot work effectively, and the back-up immediately to work, but this method can increase the weight of the spacecraft and cost. Another method is adopted to control theory, when design controllers considering the possible actuator failure, using three axis dynamic coupling characteristics to achieve attitude control. The last method does not need additional investment. Therefore, research the actuator failure compensation algorithm has the significance on theory and engineering.This paper uses the example of spacecraft systems to illustrate the control schemes of actuator failure systems. The content of the research includes the following:Firstly, the main results on the kinematics, dynamic and control methods of the attitude systems were discussed on the basis of many references. Some development tendencies of control schemes were introduced. A detailed comment on the present development of the control systems is given, and the problems of the attitude control on a rigid body are analyzed.Secondly, based on the Newton-Euler theorem, the mathematical model of rigid body is established. Four kinds of parameters for representing the attitude of a rigid body are studied. Formulas are given for changing for many kinds of parameters to the other three kinds of Parameters. The model for attitude stabilization is established.Thirdly, in this section, we discuss an sliding control method for the attitude control of a rigid body. The control law is proposed and the convergence analysis is carried out based on Lyapunov stability theory. Simulation results are presented showing the performance of the systems.Fourthly, when one actuator failure, designed the piecewise continuous variables and a continuous feedback control law with a periodic time-varying to achieve the attitude and angular velocity stabilization when the actuator failure. Finally, the numerical simulation results show that the method is effective.Fifthly, with adaptive and sliding control designed the system control law, when the actuator failure. Simulation results demonstrate the practical applicability of the proposed approach.Finally, the comparisons of several control methods are introduced which describes the advantages and deficiencies. In this paper, each control method is given stability provability and simulation example as well results respectively, the results illustrate the effectiveness of the control methods. At last, presents the main conclusions and possible avenues of further research. The advent of this paper is instrumentally and referentially significant for the attitude controller design of a rigid body.

  • 【网络出版投稿人】 济南大学
  • 【网络出版年期】2011年 10期
节点文献中: