节点文献

真空辅助树脂成型实时监测技术研究

Study on Real-Time Monitoring of Vacuum-Assisted Resin Transfer Molding

【作者】 张默

【导师】 李炜;

【作者基本信息】 东华大学 , 数字化纺织工程, 2011, 硕士

【摘要】 复合材料液体成型技术(Liquid Composite Molding,简称LCM)是指将液态聚合物注入铺有纤维预成型体的闭合模腔中,或加热熔化预先放入模腔内的树脂膜,液态聚合物在流动充模的同时完成树脂/纤维的浸润并经固化成型为制品的一类制备技术。LCM工艺构件质量很大程度上依赖于树脂的充模过程及化学固化反应。树脂流变特性、预成型体的铺层、模腔内外的压力差等都会影响充模的均一性和树脂的固化过程。LCM技术的工艺缺陷很难以准确预测,而这些缺陷往往给产品带来致命的损伤,因此LCM工艺的实时监测是改善构件质量和降低制造成本的关键。渗透率是描述织物或增强体对树脂流动阻力的物理参数,可以用来表征树脂流过多孔介质玻璃纤维织物的难易程度,它是孔隙率的函数。RTM充模过程中,精确描述树脂在增强体中的渗透特性,对优化模具设计中的注入口和排气口位置、缩短制造周期、保证产品质量至关重要。因此,深入研究树脂在充模过程中对纤维的渗透性,弄清其影响因素,并做到能够设计、控制这些因素,将会对RTM的工业化进程产生巨大的推动力。复合材料风机叶片是风力发电系统的关键动部件,直接影响着整个系统的性能,要求具有长期在户外自然环境条件下使用的耐候性和合理的价格。因此,叶片的设计和质量十分重要,被视为风力发电系统的关键技术和技术水平代表。RTM工艺的技术含量高,无论是模具设计和制造、增强材料的设计和铺放、树脂类型的选择与改性、工艺参数(如注射压力、温度、树脂粘度等)的确定与实施,都会对产品的成型与质量产生很大的影响。为了对RTM成型工艺过程进行实时监测,本课题应用PCI 9112数据采集卡GIE62图象采集卡以及PC机构成的硬件平台为基础,以LabVIEW为软件语言开发了一套实时监测系统。该系统具备SmartWave导线,压力传感器,网络摄像头等多种测量方式适用于不同实验参数的测定,与同类系统相比,本系统主要优点在于测量精度高,可扩展性强,并在接线段子排列方式,数据读写速度,软件操作界面的简洁性上都做了改进。为了验证系统的可靠性,本课题对渗透率的测量方法进行了研究,运用达西定律导出了可行的测量公式,分别用两种或两种以上的方法进行了单向渗透率平板实验,径向渗透率平板实验,两种方法得到的结果具有高度一致性。此外,还将本检测系统对实际生产过程中风机发电叶片成型过程进行了监测,以期对工艺参数的调整给出建议。

【Abstract】 Liquid composite molding technology (Liquid Composite Molding, referred to LCM) is a preparation of products which filled liquid polymer into a closed cavity covered with fiber preform, or melt the resin film in the mold cavity, the liquid polymer completed resin/fiber infiltration and curing while flowing and filling the cavity. Resin rheological properties, preform Overlay, the pressure of inside and outside the cavity will all affect the homogeneity of resin and the curing process. The defects of LCM technology,which often caused fatal damage to the product,is difficult to predict, so the real-time monitoring of LCM technology is the key to improve quality and reduce manufacturing cost.Permeability is a physical parameters of the flow resistance of resin in fabric or reinforcements. It can be used to characterize the ease of resin flowing over porous media or glass fiber fabric. It is a function of porosity. In RTM mold filling process, the accurate description of the permeability of resin in the reinforcements is critical to optimize inlet and exhaust port in injection mold design, shorten the manufacturing cycle,ensure product quality. Therefore, depth study of permeability in the process of resin filling the of the fiber, to understand its influence factors, and be able to design, control of these factors, will be a tremendous impetus to the industrialization of RTM.Blades are the key components in wind power generation system. It has a direct impact on overall system performance, requires a long life in the natural outdoor weathering environmental conditions and reasonable price. Therefore, the design and quality of the blade is very important. RTM process is of high technology. Mold design and manufacturing, and the design and placement of reinforcements, the choice of resin type and modification, process parameters (such as injection pressure, temperature, resin viscosity, etc.) will all affect the shape and quality of products produced.In order to monitor RTM molding process, the subject application use PCI 9112 data acquisition card GIE62 body image acquisition card and PC hardware platform as the basis,Labview for software language,developed by a real-time monitoring system. The system has SmartWave wire, pressure sensors, network cameras for a variety of measurements for different experimental parameters.Compared with similar systems, it has high precision, scalable, and connection piece arrangement, the data read and write speed, simple user interface software.To verify the reliability of the system, the subject studied the permeability measurement methods, get measurement formula from Darcy’s law.Two or more method were used to penetration of flat-panel one-way experiment, the radial penetration of flat-panel test, the results of the two methods are highly consistent. In addition, the detection system, is used to monitor turbine blades forming process, in the actual production process, to get recommendations on adjustment of process parameters.

  • 【网络出版投稿人】 东华大学
  • 【网络出版年期】2011年 08期
节点文献中: