节点文献

补偿模糊神经网络在砂土液化势评价中的应用

Application of Compensative Fuzzy Neural Network in Assessment of Sand Liquefaction Potential

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 董贤哲张军平

【Author】 DONG Xian-zhe1,ZHANG Jun-ping2(1.Zhejiang Province Institute of Engineering Surverying,Ningbo 315012,Zhejiang,China;2.Shanxi Province Institute of Hydroelectric Investigation and Design,Taiyuan 030024,Shanxi,China)

【机构】 浙江省工程勘察院山西省水利水电勘测设计研究院 浙江宁波315012山西太原030024

【摘要】 在分析砂土液化影响因素的基础上,选取震级、地面加速度最大值、标准贯入击数、比贯入阻力、相对密实度、平均粒径、地下水位等7个因素作为评价指标,建立了砂土液化势评价的补偿模糊神经网络模型。通过对网络的学习训练和仿真检验,表明补偿模糊神经网络是进行砂土液化势预测评价的有效手段。

【Abstract】 This paper establishes the compensative fuzzy neural network model for assessing sand liquefaction potential with seven parameters including earthquake magnitude,peak ground surface acceleration,standard penetration value,specific penetration resistance,relative compaction,average particle diameter,and water table based on analyzing some influencing factors of sand liquefaction.The result indicates that compensative fuzzy neural network is a useful tool in the assessing and predicting liquefaction potential through training and simulating the network.

  • 【文献出处】 地球科学与环境学报 ,Journal of Earth Sciences and Environment , 编辑部邮箱 ,2008年01期
  • 【分类号】TU435
  • 【被引频次】4
  • 【下载频次】86
节点文献中: