节点文献

基于无人机视觉的储罐表面缺陷检测方法

Detection method of storage tank surface defects based on UAV vision

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 舒威杨贤昭杨艳华吕琼张雄

【Author】 Shu Wei;Yang Xianzhao;Yang Yanhua;Lv Qiong;Zhang Xiong;Engineering Research Center for Metallurgical Automation and Measurement Technology of Ministry of Education, Wuhan University of Science and Technology;Designing Institute of State Bureau of Material Reserve of National Development and Reform Commission;

【通讯作者】 杨贤昭;

【机构】 武汉科技大学冶金自动化与检测技术教育部工程研究中心国家发展和改革委员会国家物资储备局设计院

【摘要】 为了保证大型储罐的正常运行,必须对储罐表面进行定期检查。现有方法通常采用攀附罐体表面的机械设备,借助涡流或漏磁进行缺陷检测,存在安全隐患和损害罐体和等问题。本文提出一种基于无人机视觉的缺陷检测方法,无人机携带相机按规划路径环绕罐体飞行以采集储罐表面图像,通过图像处理算法在线判断储罐表面是否存在缺陷。由于储罐表面的缺陷具有视觉显著性的特征,本文采用简化的Itti视觉显著性算法对缺陷图的显著区域进行提取从而分割出缺陷区域。为了解决非缺陷图像可能出现的误判问题,本文基于图像颜色通道求取显著区域的统计均值,设定阈值后降低了误判率。基于室内模拟储罐的实验结果表明,本文提出的缺陷检测方法具有良好的实时性和准确性。

【Abstract】 In order to ensure the normal operation of large tanks, the surface of the tank must be inspected regularly. Existing methods usually use mechanical equipment climbing to the surface of the tank and detecting defects by eddy current or magnetic flux leakage, there are problems such as damage to the tank body, as well as safety hazards. In this paper, a defect detection method based on unmanned aerial vehicle vision is proposed. The unmanned aerial vehicle carrying camera collects the surface image of the tank around the tank according to the planned path, and determines whether there is a defect on the surface of the tank by the image processing algorithm. Because the surface defects of the tank are visually significant, the simplified Itti visual saliency algorithm is adopted to extract the significant area of the defect image to segment the defect area. In order to solve the misjudgment problem that may occur in the non-defective images, this paper calculates the statistical mean of the salient regions based on the image color channel, and sets the threshold to greatly reduce the false-positive rate. The experiment results based on indoor simulated storage tank show that the proposed defect detection method has good real-time applicability and accuracy.

【基金】 国家重点研发计划(2017YFC0805100);国家自然科学基金(61703314)资助项目
  • 【文献出处】 高技术通讯 ,Chinese High Technology Letters , 编辑部邮箱 ,2019年08期
  • 【分类号】TP391.41;TE972
  • 【被引频次】1
  • 【下载频次】154
节点文献中: