节点文献

用于水煤气变换反应的大孔Pt/TiO2和Pt/CeO2催化剂的研究

Study on Macroporous Pt/TiO2 and Pt/CeO2 Catalysts for Water-Gas Shift Reaction

【作者】 梁皓

【导师】 刘源;

【作者基本信息】 天津大学 , 工业催化, 2009, 博士

【摘要】 燃料电池被认为是未来重要的能源设施,因此作为针对燃料电池制氢的重要反应—水煤气变换反应(WGSR)又成为了研究热点。水煤气变换反应是富氢燃料气体处理、净化过程的重要组成部分,不仅可将重整尾气中1016%CO的浓度降低到1%以下,而且可以将这部分CO转化成H2,进一步提高燃料电池系统的效率。负载型Pt基催化剂是最具应用潜力的一种新型水煤气变换催化剂,引起国内外研究者的广泛关注。其中Pt/TiO2和Pt/CeO2催化剂具有活性高、稳定性好等特点,颇具研究价值。针对燃料电池制氢需要解决的核心问题是小型化,变换反应器的体积约占碳氢化合物重整制氢系统体积的三分之二,所以变换反应器的小型化至关重要。本工作探索变换反应器小型化的新途径,研究其中的核心技术。本文采用两种模板法分别制备大孔Pt基催化剂和整体式Pt基催化剂,以XRD、TPR、HRTEM、SEM、TG等表征方法对所制备的催化材料进行表征,研究了催化剂性能和结构与性能的关系。主要结果如下:三维有序大孔(3DOM) Pt/TiO2催化剂在3%CO, 10%H2O, 87%N2的气氛中在180360℃温度区间具有很高的活性,在60,000mL×g-1×h-1空速下在250℃时达到平衡转化率,与相同组成的颗粒和介孔催化剂相比,大孔3DOM Pt/TiO2催化剂表现出更好的催化性能;Pt/TiO2催化剂反应过程中的活性组分是金属Pt纳米粒子;Pt粒子烧结是Pt/TiO2催化剂失活的原因;王水处理后催化剂的单位表面金属Pt上的CO转化率升高,在Pt/TiO2催化剂上的WGSR是个对金属铂结构敏感的反应;通过TPR和HRTEM知道助剂CeO2通过改变载体与活性组分之间的相互作用来提高催化剂活性。3DOM是实现小型化的途径。采用反相浓乳液法以聚苯乙烯为模板制备了大孔-整体式Pt/CeO2/Al2O3催化剂。通过SEM可以看到孔径在550μm的不规则大孔,孔径大小可以通过改变分散相体积分数和表面活性剂数量来改变。在模拟重整气条件下的性能测试结果显示,在低温区(180~300℃)单位体积单位时间大孔-整体式Pt/CeO2/Al2O3催化剂上CO的转化量显著高于催化剂上CO转化量。通过比较我们可以发现整体式催化剂在低温区(180~300℃)具有体积小、活性高的特点。将催化剂研制为大孔结构-整体式是实现WGSR反应器体积小型化的很有前景的途径。

【Abstract】 Water-gas shift (WGS) reaction as a potential pure hydrogen production reaction has recently been attracting rapidly growing interest due to fuel cell power system development, which is considered as a potentially energy source. WGS reaction is a critical process for fuel cell oriented hydrogen production, through which 1016%CO can be reduced below 1% and excess H2 is produced. Supported Pt-based catalysts, especially Pt/TiO2 and Pt/CeO2, are promising candidates for WGS reaction owing to their high activity at low-temperature and high stability.The key challenge for fuel cell oriented hydrogen production is the miniaturization of the process, and WGS reactor occupies almost two thirds of the volume in the hydrogen production system from hydrocarbons, so the miniaturization of WGS reactor is of great significance. The aim of this work is to develop novel techniques on WGS reactor miniaturization. Three-dimensionally ordered macroporous (3DOM) Pt/TiO2 and macroporous - monolith Pt/CeO2/Al2O3 were fabricated by using template method in this work. The so prepared macroporous catalysts were characterized with XRD, TPR, HRTEM, SEM and thermal analysis techniques, and applied to WGS reaction. The relation between catalytic performance and catalyst structure was discussed. The main results and conclusions are as follows:The 3DOM Pt/TiO2 catalysts exhibited much better catalytic performance than that of both powder and mesoporous Pt/TiO2 for WGS reaction in 3%CO, 10%H2O, 87%N2 feed gases and in the reaction temperature range of 180360℃, owing to the macroporous structure favoring mass transfer. XPS and catalytic activity results suggested that the active component for the WGS reaction in 3DOM Pt/TiO2 catalysts was metal Pt which reduced from platinum ions. The results of HRTEM and catalytic stability tests indicated that the sintering of metal Pt particles was the reason for the catalyst deactivation. Chemical adsorption analysis on different 3DOM Pt/TiO2 catalysts indicated that WGS reaction over the catalysts was structure sensitive. Adding CeO2 can promote the formation of interaction between Pt and the support. Catalysts with 3DOM structure are potential way to realize the miniaturization of WGS reactor.Macroporous-monoliths of Pt/CeO2/Al2O3 were prepared through inverse concentrated emulsions synthesis route. The macroporous materials exhibited a bimodal meso-macroporosity with macropores in size of 550μm, as shown in SEM images. The pore size can be adjusted by the volume fraction of dispersed phase and the amount of surfactant added. The macroporous monolith Pt/CeO2/Al2O3 exhibited better catalytic performance that that of micro-channel Pt/CeO2/Al2O3 catalyst for WGS reaction in simulating reformate gases. The converted amount of CO over monolith Pt/CeO2/Al2O3 was much higher than that over micro-channel Pt/CeO2/Al2O3 on per volume of catalysts, showing that the catalysts of the macroporous monolith are promising and much potential materials for the miniaturization of WGS reactor.

【关键词】 水煤气变换大孔整体式模板PtTiO2CeO2
【Key words】 Water gas shift reactionMacroporeMonolithTemplatePtTiO2CeO2
  • 【网络出版投稿人】 天津大学
  • 【网络出版年期】2010年 12期
节点文献中: