节点文献

完全二部图的单色树划分和单色树覆盖

【作者】 刘凤霞

【导师】 李学良;

【作者基本信息】 南开大学 , 应用数学, 2009, 博士

【摘要】 一个图G=(V(G),E(G))的边染色是指从其边集合E(G)到自然数子集{1,2,…,r}上的一个满射C。如果图G有这样的一个染色C,我们就称图G是一个边染色图,或r-边染色图,并用C(e)来表示边e的颜色。给定图G中的一个顶点v,顶点v的色邻域CN(v)是指集合{G(e):e与v关联}。顶点v的色度记为dc(v)=|CN(v)|。一棵树被称为单色的是指这棵树中的所有边上所染颜色都相同。1991年,Erd(o|¨)s,Gyarfas和Pyber提出了边染色图的单色树划分数的概念。r-边染色图G的单色树划分数,或简称为树划分数,记作tr(G),是指最小的k满足:对于G的任意r-边染色,图G的顶点集合可被至多k个顶点不交的单色树覆盖。Erd(o|¨)s,Gyarfas和Pyber猜想r-边染色完全图的单色树划分数是r-1,其中r≥2,并且他们证明了r=3时猜想的正确性。猜想对于r=2的情况等价于Erd(o|¨)s和Rado的断言:对任意的图G,图G和图G的补图至少有一个连通。对于无限完全图,Hajnal等人证明了一个r-边染色无限完全图的单色树划分数至多是r。对于有限完全图,Haxell和Kohayakawa证明了当n≥3r4r!(1-1/r)3(1-r)logr,任意r-边染色完全图Kn含有至多r个两两不同色的单色树,并且他们的顶点集合划分了Kn的顶点集合。Haxell和Kohayakawa还证明了当n充分大时,r-边染色的完全二部图Kn,n的单色树划分数至多是2r。一般地,确定tr(G)的精确的值是很困难的。与单色树划分数相关的一个问题是r-边染色图G的单色树覆盖数,或简称为树覆盖数,它是指最小的k满足:对于G的任意r-边染色,图G的顶点集合可被至多k个单色树(可以相交)覆盖。对于完全图,以某个点为中心的所有单色星构成了一个覆盖,所以r-边染色完全图的单色树覆盖数至多是r。Erd(o|¨)s,Gyarfas和Pyber关于树划分数的猜想的一个弱形式是:r-边染色完全图的单色树覆盖数是r-1。本文分为三部分,第一部分主要研究了2-边染色完全二部图的单色树划分问题,第二部分主要研究了3-边染色完全等部二部图的单色树划分问题,第三部分主要研究了2-边染色和3-边染色完全二部图的单色树覆盖问题。第二章中我们研究了2-边染色完全二部图的单色树划分。对于2-边染色的完全多部图K(n1,n2,…,nk),Kaneko,Kano和Suzuki证明了:设n1,n2,…,nk(2≤k)是满足1≤n1≤n2≤…≤nk的整数,并且n=n1+n2+…+nk-1,m=nk,则t2(K(n1,n2,…,nk))=(?)(m-3)/2n」+2。特别地,t2(Km,n)=(?)(m-2)/2n」+2,其中1≤n≤m。金泽民等人在2006年给出了2-边染色的完全多部图的单色树划分的多项式时间算法。第二章中我们给出了2-边染色的完全二部图的单色树划分更精细的刻画,我们将2-边染色完全二部图分为几种结构,并给出每种结构的单色树划分数。我们得到如下结果。1.如果K(A,B)是一个2-边染色完全二部图,则它是下面四种结构中的一种:(1) K(A,B)有单色支撑树,(2) K(A,B)∈M,(3) K(A,B)∈S2,(4) K(A,B)∈S1。2.如果K(A,B)∈M,则K(A,B)的顶点集可被两个同色的单色树覆盖;如果K(A,B)∈S2,则K(A,B)的顶点集要么被一个孤立点和一个单色树覆盖,要么被两个不同色的顶点不交的单色树覆盖;如果K(A,B)∈S1,并且m=|A|>|B|=n,则K(A,B)的顶点集可被至多(?)(m-2)/2n」+2个顶点不交的单色树覆盖,并且存在边染色使K(A,B)的顶点集恰被(?)(m-2)/2n」+2个顶点不交的单色树覆盖。第三章中我们研究了3-边染色等部完全二部图的单色树划分。我们给出了几种色度条件下的单色树划分数。设K(A,B)是一个3-边染色等部完全二部图,我们得到如下结果。1.如果存在色度为1的顶点,则t3(K(A,B))=3。2.如果每个顶点的色度都是2,则t3(K(A,B))=2。3.如果每个顶点的色度都是3,则t3(K(A,B))=3。4.如果每个顶点的色度都至少是2,并且恰有一个部有色度为3的顶点,则t3(K(A,B))=4。第四章中我们研究了2-边染色和3-边染色完全二部图的单色树覆盖。我们的到了如下结果:1.2-边染色完全二部图的单色树覆盖数是2。2.3-边染色完全二部图的单色树覆盖数是4。

【Abstract】 Let G =(V(G),E(G)) be a graph.By an edge coloring of G we mean a surjection C:E(G)→{1,2,…,r},the subset of natural numbers.If G is assigned such a coloring,then we say that G is an edge colored graph,or r-edge colored graph.Denote by C(e) the color of the edge e∈E.For each vertex v of G,the color neighborhood CN(v) of v is defined as the set {C(e):e is incident with v} and the color degree is denoted by dc(v)=|CN(v)|.A tree is called monochromatic if its any two edges have the same color.The monochromatic tree partition number,or simply tree partition number of an r-edge-colored graph G,denoted by tr(G),which was introduced by Erd(o|¨)s, Gyarfas and Pyber in 1991,is the minimum integer k such that whenever the edges of G are colored with r colors,the vertices of G can be covered by at most k vertex-disjoint monochromatic trees.Erd(o|¨)s,Gyarfas and Pyber conjectured that the tree partition number of an r-edge-colored complete graph is r-1,where r≥2.Moreover,they proved that the conjecture is true for r=3.For the case r=2, it is equivalent to the fact that for any graph G,either G or its complement is connected,an old remark of Erd(o|¨)s and Rado.For infinite complete graph,Hajnal et al proved that the tree partition number for an r-edge-colored infinite complete graph is at most r.For finite complete graph,Haxell and Kohayakawa proved that any r-edge-colored complete graph Kn contains at most r monochromatic trees,all of different colors,whose vertex sets partition the vertex set of Kn, provided n≥3r4r!(1-1/r)3(1-r)log r.Haxell and Kohayakawa also proved that the tree partition number for an r-edge-colored complete bipartite graph Kn,n is at most 2r,provided n is sufficiently large.In general,to determine the exact value of tr(G) is very difficult.A problem that is related to tree partitioning is to find the monochromatic tree cover number,or simply tree cover number for r-edge-colored graphs,the minimum number k such that the vertices of an r-edge-colored graph can be covered by k(not necessarily disjoint) monochromatic trees.It is obvious that the tree cover number of an r-edge-colored complete graph is at most r since the monochromatic stars at any vertex give a covering.A weaker form of tree partition conjecture introduced by Erd(o|¨)s,Gyarfas and Pyber is:the tree cover number of an r-edge-colored complete graph is r-1.This thesis consists of three parts.In the first part,we investigate the problem of the tree partition number of 2-edge-colored complete bipartite graphs. In the second part,we consider the problem of the tree partition number of 3-edge-colored complete equi-bipartite graphs.The last part is contributed to the problem of the tree cover number of 2-edge-colored complete bipartite graphs and 3-edge-colored complete bipartite graphs.In Chapter 2,we characterize the tree partition number of 2-edge-colored complete bipartite graphs.For 2-edge-colored complete multipartite graph K(n1,n2,…,nk),Kaneko,Kano,and Suzuki[34]proved the following result: Let n1,n2,…nk(k≥2) be integers such that 1≤n1<n2≤…≤nk,and let n=n1+n2+…+nk-1 and m=nk.Then t2(K(n1,n2,…,nk))=[(m-2)/2n]+2.In particular,they proved that t2(Km,n)=[(m-2)/2n]+2 where 1≤n≤m.In 2006,Jin et al[31]gave a polynomial-time algorithm to partition a 2-edge-colored complete multipartite graph into monochromatic trees.In this chapter,we give a description to partition a 2-edge-colored complete bipartite graph into monochromatic trees in more detail.To be precise,we distinguish four structures of 2-edge-colored complete bipartite graphs,and give the exact tree partition mumber for each case:1.If K(A,B) is a 2-edge-colored complete bipartite graph,then it has one of the following four structures:(1) K(A,B) has a monochromatic spanning tree;(2) K(A,B)∈M;(3) K(A,B)∈S2;(4) K(A,B)∈S1.2.If K(A,B)∈M,then the vertices of K(A,B) can be covered by two vertex-disjoint monochromatic trees with the same color;if K(A,B)∈S2,then the vertices of K(A,B) can be covered by either an isolated vertex and a monochromatic tree or two vertex-disjoint monochromatic trees with different colors;if K(A,B)∈S1 and m= |A|>|B|=n,the vertices of K(A,B) can be covered by at most[(m-2)/2n]+2 vertex-disjoint monochromatic trees,and there exists an edge coloring such that the vertices of K(A,B) are covered by exactly[(m-2)/2n]+2 vertex- disjoint monochromatic trees.In Chapter 3,we discuss the tree partition number of 3-edge-colored complete equi-bipartite graphs.We give the tree partition number under some color degree conditions.Let K(A,B) be a 3-edge-colored complete equi-bipartite graph,the following results are obtained.1.If K(A,B) has at least one vertex with color degree 1,then t3(K(A,B))=3.2.If every vertex of K(A,B) has color degree 2,then t3(K(A,B))=2.3.If every vertex of K(A,B) has color degree 3,then t3(K(A,B))=3.4.If every vertex of K(A,B) has color degree at least 2,and exactly one partite set has vertex with color degree 3,then t3(K(A,B))=4.The Chapter 4 is attributed to the tree cover number of 2-edge-colored complete bipartite graphs and 3-edge-colored complete bipartite graphs.We prove:1.The tree cover number of a 2-edge-colored complete bipartite graph is 2.2.The tree cover number of a 3-edge-colored complete bipartite graph is 4.

  • 【网络出版投稿人】 南开大学
  • 【网络出版年期】2010年 07期
节点文献中: