节点文献
有机磷化合物对真丝绸的阻燃整理
Flame Resistance Finishing on Silk Fabric with Organophosphorus Compounds
【作者】 关晋平;
【导师】 陈国强;
【作者基本信息】 苏州大学 , 纺织化学与染整工程, 2008, 博士
【摘要】 真丝绸的阻燃整理,尤其是无甲醛阻燃整理一直以来都是一个挑战,以往的阻燃处理有的不耐水洗,有的虽然阻燃效果良好,但却有甲醛释放问题,严重影响服用功能。鉴于此,本文采用了两种阻燃体系对真丝电力纺进行阻燃整理,获得了优良的且为环境友好的阻燃效果。本文采用的第一种体系为乙烯基单体与真丝织物接枝共聚进行阻燃改性。本文合成了两种乙烯基含磷单体:1)二乙基-2-甲基丙烯酰氧基-乙基磷酸酯(DEMEP);(DMMEP),并通过红外光谱、1H核磁共振谱、13C核磁共振谱确定了所得产物即为目标产物。产物DEMEP不溶于水,应用于丝织物前须经预乳化,乳化剂可用Tween 80/Span 80按质量百分比65.9%/34.1%复配使用,用量为DEMEP用量的10%。DMMEP可溶于水,可直接在水溶液中与丝织物进行反应。通过研究接枝工艺参数对接枝率的影响,得出如下较佳的接枝工艺:两种单体质量分数为60-120%(owf),引发剂质量分数0.9-1.0% (owm),温度85℃,时间45-60 min,浴比1:30,反应浴pH值为4.5,反应结束后按下述工艺水洗3次,晾干即可。水洗工艺为:平平加O2g/l,浴比1:50,温度60℃,20分钟。通过对接枝前后丝织物的红外光谱分析可知,阻燃后丝织物上有明显的阻燃剂分子的吸收;氨基酸分析知阻燃整理后丝织物上的氨基酸含量与未阻燃时显著差异,胱氨酸全部消失,丝氨酸、酪氨酸也减少较多,由此推测了接枝反应的机理;通过X-射线能谱分析可知,随着接枝率的增高,丝织物上的磷含量也在逐渐增加,通过扫描电子显微镜对阻燃整理前后丝纤维的纵向和截面形态的观察可看出,整理后,丝纤维纵向有沟槽,截面出现孔穴,这都表明阻燃剂与丝织物发生了相互作用。通过X-射线衍射可知,阻燃整理后,丝织物的结晶结构并未发生明显的改变,说明反应仅发生在丝织物的无定形区及准结晶区。阻燃处理后,丝织物有一定程度的泛黄,且随着接枝率的增加,白度下降,但泛黄程度并不严重;丝织物的拉伸强力亦稍有下降,但下降幅度不大,最大下降仅为9.6%,不影响真丝织物的服用及其它功能;阻燃整理后不影响丝织物的手感;整理后丝织物的透气性有所下降。阻燃处理后,丝织物的阻燃性能大大改善,丝织物的氧指数均较未处理丝织物大幅提高。DEMEP处理丝织物接枝率达11.8%以上,DMMEP处理丝织物接枝率达8.1%以上时氧指数便可达到28%以上,即达到遇火自熄的阻燃性能。阻燃整理后丝织物均可通过垂直燃烧测试,可达到中华人民共和国阻燃机织物阻燃性能B2级要求(炭长小于200 mm),阻燃装饰织物阻燃性能B1级要求(炭长小于150 mm)。洗涤30次后,氧指数仍在27%以上,遇火仍可自熄,炭长远远小于178 mm,阻燃性能良好;但洗涤50次后,阻燃性能基本失去,不能通过垂直燃烧测试,而且氧指数也接近未处理丝织物。通过对阻燃整理前后丝织物进行热重分析知,阻燃后丝织物的起始分解温度降低了将近30℃,达到最大分解速率时的温度也提前了近20℃,而且在600℃裂解结束时,阻燃丝织物的残渣量(26.2%)远远高于未阻燃丝织物(5.3%)。表明此类阻燃剂的阻燃机理是通过使丝织物脱水成炭,减少可燃性气体产物,增加固体炭渣含量,属固相(缩合相、凝聚相)机理。锥形量热仪测试的结果也表明,阻燃整理后,丝织物的点燃时间比未处理时延长了3倍之长,阻燃整理后丝织物难以被点燃,而且一旦点燃后,其热释放速率远远小于未阻燃丝织物。而通过表观动力学的模拟可知,丝织物经阻燃整理后,在主要裂解阶段活化能低于未阻燃时丝织物活化能,表明阻燃整理后更易于裂解。裂解气质联谱测试结果也说明阻燃整理后,丝织物的裂解方式发生了很大变化,受热主要为阻燃剂催化丝织物脱水成炭。本文采用的第二种阻燃体系为化学交联法。采用的阻燃剂为羟基含磷低聚物HFPO,结构式如下:采用1,2,3,4-丁烷四羧酸(BTCA)作为交联剂,三乙醇胺(TEA)作为共反应剂对真丝电力纺进行阻燃处理,通过对各工艺条件的试验,证明此阻燃剂应用于真丝进行阻燃整理的可行的,并由此得到了比较适合的整理配方:交联剂BTCA与阻燃剂HFPO的最佳摩尔比为1:1.75,催化剂次磷酸钠的用量为BTCA用量的80%,共反应剂三乙醇胺用量为BTCA的25%,pH值调节为2.5,二浸二轧,轧液率为100%,90℃烘干2分钟,160℃烘干2分钟,水洗,烘干。本文研究了交联剂与阻燃剂及共反应剂的反应机理,指出交联剂BTCA用量并不与阻燃剂的固着成正比,而是存在一个峰值,这是因为交联剂与阻燃剂及丝织物本身存在着竞争反应所致。共反应剂三乙醇胺的添加可提高阻燃剂在丝织物上的固着量,但由于三乙醇胺与阻燃剂、三乙醇胺与BTCA二者之间的竞争反应导致三乙醇胺的用量也是以少量为宜。增大其用量对阻燃效果并无益处,丝织物手感却大受影响。添加15-30%的阻燃剂HFPO丝织物可具有阻燃效果,氧指数大于27%,且能通过垂直燃烧试验,阻燃后丝织物的白度有所下降,有一定程度的泛黄,织物硬度增加,手感受到一定影响,强力较未处理时有所下降,当阻燃剂添加量为30%时,织物经向强力下降约23%,纬向强力下降约6.8%。水洗15次后仍可通过垂直燃烧试验,但水洗30次后阻燃效果基本消失。通过热重分析得出丝织物的起始分解温度提前约50℃,裂解结束后炭质残渣的产量也比未阻燃时增加了14个百分点,说明该阻燃剂是在凝聚相起作用从而达到对丝织物的阻燃目的。本文突破了前人的研究成果,采用新的合成方法成功将乙烯基单体与含磷物质结合起来合成出可和真丝织物接枝共聚的单体,并将其应用于真丝织物上取得了较好的阻燃效果,较低的接枝率便可达到遇火自熄及通过垂直燃烧试验的效果,阻燃后可耐30次水洗,对手感、强力几乎无影响。通过锥形量热仪测知,经阻燃整理后,丝织物的火灾危险性大大降低;并通过利用裂解气质联谱以及对阻燃丝织物表观热裂解动力学的研究,证明了此阻燃剂对丝织物的阻燃效果,并推测了其可能的阻燃机理,为真丝织物的阻燃科学研究提供了的理论和事实依据。在化学交联法阻燃研究的过程中,发现了阻燃剂、交联剂与丝织物的交联机理。
【Abstract】 The flame resistance finishing of silk fabric is still a challenge for chemical treatments available are not able to ensure sufficient laundering durability and some treatments are based on carcinogenic formaldehyde.To solve this problem, in this paper, two kinds of different environment friendly flame resistance finishing systems were applied to treat silk fabric.One method is copolymerization of vinyl phosphate and silk fabric. Two vinyl phosphate monomers were synthesized using a new synthesis route in our lab: diethyl methacryloyloxyethyl phosphate (DEMEP) and dimethyl methacryloyloxyethyl phosphate (DMMEP), the schemes are as follows:The structure of DEMEP and DMMEP were confirmed by 1H NMR, 13C NMR and IR spectra of the two compounds. DEMEP can not dissolve in water, and it must be pre-emulsified before copolymerization. The suitable emulsifier is the combination of Tween 80 / Span 80 on the ratio of 65.9 %/34.1 % (w/w). DMMEP can dissolve in water well and it can be applied in water directly. Adding 10% of the complex emulsifier can disperse DEMEP well in water and the emulsion is stable.By investigating the reaction parameters, an optimized copolymerization was obtainedas follows: the amount of DEMEP or DMMEP is 60-120 % (on the weight of fibers, owf); the initiator potassium persulfate 0.9 1.0% (on the weight of monomer, o.w.m.). The pH of thermal decomposition of control and flame retarded silk fabric was studied and showed that the apparent activation energy (E) of flame retarded silk fabric was lower than that of the control silk fabric, which showed that flame retarded silk fabric decomposed more easily than control silk fabric. The pyrolysis experiments showed that after grafted with DEMEP, silk fabric changed the pyrolysis model and decomposed at lower temperature. By all this measurement, the possible flame retardancy mechanism of DEMEP and DMMEP can be speculated that these two flame retardants work in condensed phase; they can promote silk fabric dehydration and char formation, reduce the flammable gas volatiles.The other method is chemical crosslinking of silk fabric with flame retardant by a crosslinking agent 1, 2, 3,4- butanetetracarboxylic acid (BTCA). The flame retardant here used is a hydroxyl-functional organophosphorus oligomer (HFPO):The optimized flame resistance finishing formula is: BTCA 15-30 %( w/w), the molar ratio of BTCA and HFPO is 1:1.75, catalyst sodium phosphate is 80%(on the weight of BTCA), the pH value of finishing solution should be adjusted to 2.5 by HC1 or NaOH, two dips, two nips, the wet pick up is 100%, then dry at 90℃for2min, cured at 160℃for 2 min, and wash, dry. Adding 25% triethanolamine (TEA, on the weight of BTCA ) can improve the fixation of HFPO onto silk fabric and improve the laundering durability.The paper explored the crosslinking mechanism of silk fabric and BTCA, HFPO and TEA. Much BTCA can not bond much HFPO because of the competitive reaction of BTCA-silk, silk-BTCA-HFPO and BTCA-HFPO. And the reaction of BTCA with both HFPO and silk which results in the bonding of HFPO onto the silk through a BTCA "bridge", which is hoped to happen. The mechanism was studied by measuring the wrinkle recovery angle, phosphorus content, carbonyl band intensity in the infrared spectra and the stiffness of the treated silk fabric. The amount of triethanolamine can not be high because of the competitive reaction between TEA-BTCA and HFPO-BTCA, and too much triethanolamine is not good for handle and flame retardancy.The LOI of silk fabric is higher than 27% after adding 15-30%HFPO and can pass vertical flammability test. But this treatment can cause the whiteness and tensile strength loss for silk fabric. And the most negative effect is the stiffness of silk fabric. This treatment can withstand 15 laundering cycles.Thermal gravimetric analysis showed that after treated with HFPO/BTCA/TEA system, the initial decomposition temperature is lowered about 50℃compared with control silk fabric and at the end of the decomposition; The char residue is increase by 14 perentage points, which showed that HFPO HFPO/BTCA/TEA system worked in condensed phase. It still give silk fabric flame retardancy by promote char formation.
【Key words】 Flame retardants; Flame resistance finishing; graft copolymerization; silk; organophosphorus; BTCA;