节点文献

脉冲发动机提供控制力的火箭弹弹道修正理论及技术研究

The Study of Theory and Technique for Rocket Trajectory Correction by the Control Force of Lateral Push Jet

【作者】 赵捍东

【导师】 郭锡福;

【作者基本信息】 南京理工大学 , 兵器发射理论与技术, 2008, 博士

【摘要】 在地面、海上和空中火力对抗与支援作战中,火箭炮起主要作用。它是我军压制兵器的主装备。随着向远程和超远程方向发展,必须解决火箭弹落点散布大的缺陷。为解决此问题,简易控制实现弹道修正理论及技术应运而生。本论文主要研究利用脉冲发动机提供的控制力,对火箭弹弹道进行修正的方法,达到火箭炮攻击目标快、准的目的。文中,在对火箭弹弹道修正方案分析前提下,首次提出落点预测制导律(IPFGL),并用该制导律实现火箭弹的弹道修正。文中,根据弹道修正方案,确定了脉冲发动机安装位置和配置参数,给出脉冲控制力及力矩计算的简化模型,建立了火箭弹飞行弹道动力学模型。该动力学模型是由13个非线性微分方程组成的方程组。为了低成本、抗干扰的目标,本文首次提出在火箭弹上采用三分量磁强计和单轴微机械滚转陀螺组成的磁-惯性姿态探测系统。对该系统的工作过程进行了深入分析,建立了弹体飞行姿态解算数学模型,给出了姿态算法仿真流程图。仿真结果表明,姿态解算算法能够满足测量精度要求。对弹道动力学模型,用本文提出的落点预测制导律和Thanat Jitpraphai,BradleyBurchett等人提出的弹道航迹制导律(TT)及抛物线比例导航制导律(PAPNG)进行弹道修正效能对比。结果表明,落点预测制导律在纵向(射向)和横向两个方向上弹道修正效果明显优于其它两种制导律。在落点预测制导律中,首次提出建立目标坐标系,并利用目标坐标系求取落点偏差矢量。以某火箭弹为仿真计算模型,采用四阶Runge-Kutta法,一条弹道平均解算时间为2s,不能满足弹道修正系统快速性要求。为此,本文对动力学模型进行了合理的线性化并仿真,其结果与非线性化模型仿真结果进行对比分析表明,计算误差在小于0.1%情况下,一条弹道解算时间减少1倍。本文首次提出单个脉冲发动机修正能力函数(ABI)的概念,变量为火箭弹质心到目标点距离X,和脉冲控制力F_j。根据ABI和仿真实验,得到修正能力决策表,最后给出脉冲发动机最佳配置参数。综上所述,理论分析与仿真实验表明,本文提出的利用脉冲发动机提供控制力实现火箭弹弹道修正方法具有一定的实用价值。

【Abstract】 On the ground,at sea and in the air,the rocket artillery plays an important role in the fire antagonism and battlefield support.It is the host equipment of army in pressing weapon. Along with the development of weapon towards to the long-range and the super-long-range, the shortage of large impact point dispersion of a rocket projectile is must be solved.In order to solve this problem,using the inexpensive control mechanism to realize the trajectory correction method is emerging as the age requirement.This thesis mainly researches on the method using the controlling force which is provided by lateral pulse jets to carry on trajectory correction of the rocket projectile,and achieves the goal that the rocket artillery can attack the target quickly and accurately.In the thesis,for the first time,on the premise of analyzing the trajectory correction scheme,the Impact Point Forecast Guidance Law(IPFGL) is proposed,with this law the trajectory correction of the rocket projectile can be realized.According to the trajectory correction scheme,the installation position and configuration parameters of the pulse jets have been determined.The simplified model of the pulse controlling forces and moments calculation has been given.The rocket projectile flight trajectory dynamic model being composed of 13 nonlinear differential equations has been established.In order to achieve the goal of low cost and anti-jamming,in this thesis,for the first time, a magnetism-inertia attitude detection system being composed of three component magnetometers and a single axle micro-machine gyroscope is proposed using on rocket projectile.On the thorough analysis to the work process of this system,the thesis has established the resolving mathematical model of rocket projectile flight attitude,and given the simulation flowchart of attitude algorithm.The simulation results indicate that the attitude resolving algorithm can satisfy the request of measuring accuracy.According to the rocket dynamic model,the trajectory correction efficiency is compared between IPFGL with Trajectory Tracking Guidance law(TT) and Parabolic Proportional Navigation Guidance Law(PAPNG) proposed by Thanat Jitpraphai,Bradley Burchett et al. The results show that IPFGL is superior to two other kinds of guidance laws for trajectory correction efficiency in longitudinal direction(the direction of fire) and crosswise direction. For the first time,the thesis put forward the method of getting impact point error by establishing the target coordinate system.Taking the 122mm 30km rocket projectile as the simulation computation model,a single trajectory average calculating time is 2 seconds by use of four steps Runge-Kutta algorithm,it can’t satisfy the rapidity request of the trajectory correction system.Therefore,a reasonable linear projectile theory is proposed. Simulation results show that a single trajectory resolving time can be reduced by 1 times under the calculation error being less than 0.1%.The concept of single pulse jet correction ability function(ABI) is proposed for the first time in thesis,ABI = F(X,F_j).Here,X is the distance between the rocket projectile mass center with the target point,F_j is the control force.According to ABI and the simulation experiment,the correction ability decision table has been obtained,and finally the best configuration parameters of the pulse jet have been given.In summary,the theoretical analysis and the simulation experiment indicated that the method bring forward by the thesis,which use the controlling force provided by the pulse jet to realize the rocket projectile trajectory correction,has certain practical value.

节点文献中: