节点文献

求解半定约束二次规划逆问题的数值方法

Numerical Methods for Inverse Semi-definite Quadratic Programming Problems

【作者】 肖现涛

【导师】 夏尊铨; 张立卫;

【作者基本信息】 大连理工大学 , 运筹学与控制论, 2009, 博士

【摘要】 本论文研究了一类由半定约束二次规划问题产生的逆优化问题。此逆问题通过尽量小地调整半定二次规划问题的目标函数的参数,使得已知的可行解为调整后的问题的最优解。我们将此逆问题转化为带有半正定矩阵锥约束的极小化问题,并且经推导可知其对偶问题为一个带有线性半正定矩阵锥约束的半光滑可微凸问题。并且当问题的规模很大时,对偶问题变量的维数远小于原问题变量的维数,所以本论文的中心就是研究如何求解此对偶问题。本论文的内容概括如下:1.在第一章中,首先介绍了逆优化问题的背景及其研究现状,然后提出了本文所要研究的一类产生于半定二次规划问题的逆问题,并通过一系列等价转化得到其对偶问题ISDQD(A,B)。2.第二章研究了用增广拉格朗日方法求解半定二次规划逆问题的对偶问题.首先概述了增广拉格朗日方法的背景和发展历史,接着回顾了半光滑分析的一些知识和半正定矩阵锥的一些性质。然后在一定的假设条件下,给出了增广拉格朗日方法求解问题ISDQD(A,B)的全局收敛性和线性收敛速度。最后给出数值实验结果。3.第三章的主要内容是用光滑化牛顿法求解半定二次规划逆问题的对偶问题的Karush-Kuhn-Tucker系统。首先介绍了一种光滑化函数以及它的一些性质。然后运用此光滑化函数将问题ISDQD(A,B)的Karush-Kuhn-Tucker系统转化为一个光滑方程组,接着用光滑化牛顿法求解此方程组,然后给出了光滑化牛顿法的收敛性和收敛速度。最后由数值实验说明了此方法的有效性。4.第四章探讨了由光滑化牛顿法改进得到的非精确光滑化牛顿法求解对偶问题ISDQD(A,B)的Karush-Kuhn-Tucker系统。首先引入了矩阵值函数的一些知识,然后在严格互补和非退化性条件成立的假设下,给出了非精确光滑化牛顿法的收敛结果。最后我们对几种求解ISDQD(A,B)的方法进行了数值实验,并对其结果进行了比较和分析。

【Abstract】 We consider an inverse optimization problem raised from the semi-definite quadratic programming (SDQP) problem.In the inverse problem,the parameters in the objective function of a given SDQP problem are adjusted as little as possible so that a known feasible solution becomes the optimal one.We formulate this problem into a minimization problem with a positive semi-definite cone constraint,and its dual problem is a linearly positive semi-definite cone constrained semismoothly differentiable convex programming problem with fewer variables than the original one.Therefore this thesis is focused on solving the dual problem.The main results of this dissertation are summarized as follows:1.Chapter 1 first gives the introduction,background and current research of inverse optimization. Then we describe the inverse semi-definite quadratic programming problems studied in this thesis,and derive its dual problem ISDQD(A,B).2.Chapter 2 deals with the augmented Lagrangian method for the dual problem of the inverse semi-definite quadratic programming problems.In this chapter we first describe the background of the augmented Lagrangian method.Following a preliminary review of semismooth analysis and the positive semi-definite cone,we present the convergence analysis of augmented Lagrangian method for solving the dual problem.In the end,we report our numerical results.3.The contents of Chapter 3 are mainly about the smoothing Newton method for the Karush-Kuhn -Tucker system of problem ISDQD(A,B).First we introduce a smoothing function and study its properties.Then we present the convergence analysis of smoothing Newton method for the smooth linear system which is a smoothing approximation of the referred Karush-Kuhn-Tucker system.In the end of Chapter 3,our numerical experiment results show that this method is very effective.4.In Chapter 4,we discuss the inexact smoothing Newton method which is based on the smoothing Newton method.Following some preliminaries on matrix valued functions, we apply the inexact smoothing Newton method to solve problem ISDQD(A,B).Under the strict complementary and nondegeneracy assumptions,we give the convergence results of the inexact smoothing Newton method.Finally,in our numerical experiment we measure the numerical performance of four numerical methods for solving problem ISDQD(A,B).

节点文献中: