节点文献

PHEV复合电源及Halbach永磁同步电机驱动技术的研究

Study on Hybrid Electric Power and halbach Permanent Magent Synchronous Motor Drive Technology of PHEV

【作者】 张好明

【导师】 孙玉坤;

【作者基本信息】 江苏大学 , 电力电子与电力传动, 2009, 博士

【摘要】 汽车的发展时刻面临着环保和节能两大主题。世界各国政府都在探索新途径,一方面控制汽车污染物的排放,另一方面推进各种汽车清洁节能技术的开发和应用。并联混合动力电动汽车由于具有结构简单、低排放甚至零排放、低噪声和节能等优点,成为当今汽车研究和开发热点之一。蓄电池管理技术、再生制动、电机本体及其驱动是并联混合动力电动汽车发展的关键技术,本文针对这些关键技术进行了研究。首先,分析了各种动力型电池的优缺点,然后确定了以锂离子电池为主的储能系统。通过对汽车行驶功率需求的建模,确定了基于混合动力电动汽车的锂离子电池能源系统参数,并对基于R5421锂离子电池充放电回路的保护进行了深入研究。为了保护低压附近工作时的场管,提出了基于CD4011锂离子电池下限自锁电路;为了消除锂离子电池充放电后电压参差不齐的现象,提高系统性能,提出了基于R5421、TL431和“飞渡电容”锂离子电池均衡电路。较准确、可靠地获得电池SOC是并联混合动力电动汽车能量管理系统中最基本和最首要的任务,因为SOC值直接反映了电池所处的状态,是混合动力电动汽车整车控制策略的重要参数之一。它是决定混合动力电动汽车的功率在发动机和电动机之间如何进行有效分配的依据之一,也是优化混合动力电动汽车能量管理系统,提高混合动力电动汽车车载电池使用效率,降低整车蓄电池成本的关键。论文分析了传统SOC预测方法以及其弊病,提出了基于模糊理论的锂离子电池SOC预测方法,在Matlab仿真环境下对锂离子电池的SOC模糊预测进行了仿真,与实验结果吻合;针对混合动力电动汽车的特殊需要,设计了基于TMS320LF2407A锂离子电池智能管理系统,并对此智能系统进行了试验研究。其次,对制约并联混合动力电动汽车一次充电电动行驶里程因素进行了研究。虽然蓄电池功率密度较低影响了其电动路程,但是城市运行工况下频繁刹车以及下坡刹车能量没有回收也是导致其里程较短的一个非常重要的原因。汽车的能量有30%被用于刹车,因此,合理利用电制动,不仅为混合动力电动汽车提供辅助制动功能,提高混合动力电动汽车整车制动性能,而且还能够通过回收制动能量来节约能源,延长混合动力电动汽车的一次充电续驶里程,所以在现有的情况下对混合动力汽车再生制动的研究是一项非常有意义的工作。论文针对超级电容和蓄电池的各自优点,提出了复合电源储能再生制动系统,并通过Matlab/simulink对复合电源的再生制动系统进行了仿真,根据复合制动系统回收能量确定了超级电容的参数,针对多超级电容系统进行了均衡设计。基于复合电源的并联混合动力汽车控制策略需要解决的主要问题就是如何实现需求转矩在发动机和电机之间的最优分配,针对逻辑门限控制的缺点,论文提出了基于模糊理论的控制策略,然后在ADVISOR仿真软件的帮助下对此控制策略进行了分析,结果表明基于模糊控制策略的混合动力电动汽车的性能远远优于基于逻辑门限控制策略的混合动力电动汽车的性能。接着,对应用于混合动力电动汽车双向DC/DC变换器进行了研究。通过对几种常用非隔离双向DC/DC变换器的拓扑结构分析、比较,决定采用双向半桥变换器拓扑结构,并对双向半桥变换器的运行模式进行了详细分析,根据双向DC/DC变换器的设计要求,确定了双向半桥变换器的元器件参数,使用仿真软件Matlab/simulink建立了双向DC/DC变换器的仿真模型,仿真结果证明了理论分析和计算的正确性。在此基础上,讨论了双向DC/DC变换器在实际系统中的实现,主要包括硬件设计和软件设计两部分,并对双向DC/DC变换器进行了试验分析。最后,对混合动力电动汽车电力驱动系统进行了实验研究。针对混合动力电动汽车电机高速、高效、高功率密度、低脉动转矩的特殊要求,引入了新型永磁同步Halbach电动机。在对其基本原理及特性详细分析的基础上,参考普通永磁同步电动机设计参数,采用场路结合的方法,利用Matlab语言建立了Halbach永磁同步电动机的计算机辅助设计程序,并利用有限元分析软件ANSYS建立了其有限元分析模型。在普通永磁同步电动机DTC控制理论的基础上建立了Halbach永磁同步电动机的直接转矩控制模型。对基于混合动力电动汽车的Halbach永磁同步电动机电力驱动系统进行了软硬件设计,并对矢量控制和直接转矩控制两种控制方式进行了试验研究,结果表明基于直接转矩控制的Halbach永磁同步电动机在混合动力电动汽车中具有较好的应用价值和前景。

【Abstract】 The development of vehicle facing two major themes:environmental protection and energy saving.Governments around the world are exploring new ways,on the one hand to control the emissions of pollutants from vehicles,on the other hand,promote development and application of a variety of clean technologies.Because of its simple structure,low-emission and even zero-emission,low noise and energy-saving advantages,PHEV(parallel hybrid electric vehicle)becomes one of the automobile industry research and development hot spot.Battery management technology,regenerative braking,motor and its drive are key technologies of PHEV,Paper focuses on these issues.Firstly,a variety of battery’s advantages and disadvantages are analyzed,and determine to use lithium-ion battery to storage energy.On the basis of PHEV power need model,lithium-ion battery parameters is decided,and protection circuit based on R5421 is studied.To protect MOFET normal work in low voltage,the lower limit of lithium-ion battery self-locking circuit based on CD4011 is put forward;To eliminate lithium-ion battery voltage difference after large current charging and discharging,lithium-ion battery equalization circuits based on R5421, TL431 and flying capacitor are put forward.More accurate,reliable access to battery SOC is the most basic and most important task in PHEV management system,as a direct reflection of the value of battery,is one of the important parameters to the vehicle control strategy.It is the decision of PHEV to allocate power to engine and motor,as well as important factor to optimize PHEV energy management system,improve battery efficiency and reduce the cost of battery.In the paper,traditional method of lithium-ion battery SOC forecast is analyzed,and points out the drawbacks of traditional SOC forecast methods,then put forward a SOC forecasting method based on fuzzy control,in the Matlab simulation environment,lithium-ion battery SOC prediction simulation is builded,results coincide with experiments.Smart lithium-ion battery management system based on TMS320LF2407A is desiged and tested to cater for the special need of PHEV. Subsequently,constraint factors to PHEV electric charge mileage are studied.Although low battery power density affects their electrical distance, frequent braking in the city running conditions,as well as no recovery of downhill braking energy also is one of important reasons.By analyzing,vehicles use 30%of its energy for braking,the rational use of electric braking,not only to provide auxiliary brake function for PHEV,improve the PHEV braking performance,but also through the braking energy recovery to conserve energy and extend the PHEV electric mileage,so under the present circumstances,research of the PHEV regenerative braking is a very meaningful work.In the light of super capacitor and battery respective merits,braking system based on hybrid power supply system is proposed,and then through matlab simulation model of hybrid power supply braking system is builded,the parameters of SC is determined according to energy recovery.To improve performance of system,equalization circuit of super capacitor is designed.In PHEV control system based on hybrid electric power,the main task of control strategies is how to allocate torque to engine and motor acording to their energy,strategy based on fuzzy control theory is proposed to replace the logic threshold control strategy.With the help of ADVISOR,simulation of this control strategy are analyzed,results show that PHEV’s performance based on fuzzy control strategy is far better than the performance based on threshold logic control strategy.Then,Bi-directional DC/DC converters used in PHEV are analyzed.From analysis of common bi-directional isolation DC/DC converter topologies, bi-directional half-bridge converter topology is adopted.Bi-directional half-bridge converter operation mode based is analyzed,according to DC/DC converter design requirements,the parameters of converter components are determined;Simulation model of bi-directional DC/DC converter is established based on Matlab/simulink, simulation results prove the correctness of theoretical analysis and calculation. Realization of the DC/DC converters is discussed,including the design of hardware and software,on the basis,experiment test of bi-directional half-bridge converter is completed.Finally,PHEV power drive system is studied experimentally.To meet the special requirements of PHEV motor:high-speed,high efficiency,high power density,low ripple torque,a new type permanent magnet synchronous motor ---Halbach motor is introduced in this paper.Through detailed analysis of its basic principles and characteristics,refer to traditional PMSM design,use field-circuit method,Halbach permanent magnet synchronous motor’s computer-aided design program based on Matlab language and its finite element analysis model based on ANSYS are established.According to traditional PMSM DTC control theory, Halbach PMSM DTC model is realized.Software and hardware design of Halbach PMSM drive system based on PHEV is studied,experiments of vector control and DTC are studied on the test platform,results show that Halbach PMSM under DTC control has a better value and prospects in PHEV.

  • 【网络出版投稿人】 江苏大学
  • 【网络出版年期】2009年 09期
节点文献中: