节点文献
空间机器人六自由度浮游目标捕获功能地面验证系统研究
Ground Verification System of Capture Ability about 6DOF Floting Object for Space Robot
【作者】 查世红;
【导师】 梅涛;
【作者基本信息】 中国科学技术大学 , 精密仪器及机械, 2008, 博士
【摘要】 航天器在轨捕获和对接技术已经成为航天技术中的一个重要研究和应用方向,它是载人航天的关键技术,同时也是今后扩展卫星应用能力的一个重要手段。研制卫星用捕获机构,目的是使卫星尽可能长时间地维持有效和稳定的运动轨道,以延长在轨寿命,降低更替频率。同时,卫星需要具备变轨能力以使其不易受到攻击,能够为观察新的敏感区域重新定位,或减少对全球覆盖多卫星群的需求。此外,由于发射成本及重量所限,要求卫星具有在轨服务功能,完成在轨燃料加注,利用自动负载处理系统更换卫星受损元件或补充耗费品等任务。卫星用捕获机构将大大扩展卫星的应用范围和使用的灵活性。本文的主要内容为:(1)介绍了空间机器人的国内外发展现状和意义。空间机器人的主要分类、自由飞行空间机器人的主要用途、说明了地面模拟卫星气浮台的关键技术,阐述了气体轴承在卫星气浮台中的应用。(2)研究了气体静压轴承静特性的有限元分析方法,分析了各个坐标系下的数学模型和保角变换关系,并详细推导了小孔变换公式,从而能够更精确的计算轴承的流量和承载能力。(3)研究了气体静压轴承的非参数优化研究方法,介绍了支持向机的理论和回归方法,并用于气体静压轴承的非参数建模。在此基础上,研究了基于遗传算法的非参数研究工作。(4)研究了半主动空间微重力方法。主要包括竖直方向的重力补偿方法的研究,在此基础上,结合气体静压轴承的研究,设计了一种半主动六自由度模拟卫星,并研究了卫星姿态摆放系统。(5)研究了一种空间机械手的自动换爪装置,说明了它的工作原理和具体结构,并给出了仿真结果和实际模型。本文的主要创新工作:(1)设计了一种半主动六自由度模拟卫星,该卫星克服了以往被动式吊丝和气缸微重力系统的缺点,提高了微重力系统的精度。(2)设计了一种简单实用的模拟卫星位姿摆放系统,满足了总体提出的实验要求。(3)设计了一种空间机械手的自动换爪装置,从而为国内空间机器人的自动更换装置填补了一项空白。
【Abstract】 Spacecraft’s in-orbit capturing and docking has become an important direction of research and application of space technology, which is the key to manned space flight technology, and also an important tool in the future to expand the application of satellite capacity. The aim of development of the instrument capturing satellite is that to maintain an effective and stable track movement as long as possible in order to extend the orbital lifetime, reducing the frequency of turnover. At the same time, satellite orbit requires the ability to make it less susceptible to attacks, to be able re-positioning to see sensitive region, or to reduce the global satellite coverage and more. In addition, due to launch costs and weight constraints, require in-orbit satellites with a service function, the completion of on-orbit fuel, the use of automatic loading system to replace damaged satellite components or goods such as the cost to add the task. Spacecraft’s in-orbit capturing instrument will expand the scope of application satellites and the use of flexibility. greatlyThe main contents are as follows:(1) Introducing the space robot’s current development situation and domestic and international significance. The main categories of space robots, free-flying space robot’s mainly application, to show the simulated ground-air satellite platform’s key technologies and mainly application of gas bearing in ground-air satellite.(2) Studying the finite element method about the static gas bearing characteristics , analyzing conformal transformation under various coordinates, and deriving small hole transformation dentally.(3) Studying the gas bearing non-parametric optimization methods, introducing support vector machine theory and method of reunification, used in the gas bearing non-parameter model. On this basis, the non-parameter research based on genetic algorithm is performed.(4) Studying the semi-active method of micro-gravity space main in the research of vertical direction Gravity compensation. On this basis, with combination of gas bearing research, a semi-active six degrees of freedom simulation satellite is designed, and the satellite’s reposition system is studied also.(5) Studying an automatic claw changer device for space robot, its working principle and concrete structure are illustrated and giving the simulation results.The main innovation of this paper:(1) A semi-active six degrees of freedom simulation satellite is designed, the satellite overcomes the shortcomings of past passive hanging wire and cylinder micro-gravity system of the shortcomings to improve the accuracy of the micro-gravity system.(2) A simple satellite reposition system is designed to meet the general requirements put forward by the experiment.(3) A space robot’s automatic claw exchanger device is designed to fill a domestic gap.
【Key words】 space robot; simulation satellite; micro gravity; gas bearing; claw;