节点文献

雨水池设计理论研究

The Theoretical Research on Design of Rainwater Tanks

【作者】 汪明明

【导师】 周玉文;

【作者基本信息】 北京工业大学 , 市政工程, 2008, 博士

【摘要】 在中国,雨水池设计理论在城市因缺水和洪水而开展雨水管理之前,几乎处于空白,城市排水中雨水调节池的设计,也一直借助前苏联的公式。近年来,在开展城市雨洪利用工程后,由于在工程中频繁涉及到雨水池的设计,才促进了对雨水池容积设计等相关内容的探讨和研究。但雨水池的相关理论研究还是太少,尚需进一步探讨,进一步丰富和完善。针对我国雨水池设计现状,本文提出了研究雨水池设计理论的课题,旨在解决雨水池容积计算问题,并以此为线索,开展雨水池设计的基本理论研究。在前人研究的基础上,运用水文学、水力学、数理统计学等理论和基本原理,对雨水池的设计进行了分析、理论探讨和算例研究,研究内容包括设计暴雨(降雨资料统计分析方法、设计暴雨时程分配方法)、降雨量公式的推求方法、降雨扣损方法、流量过程线的计算方法、不同目标的雨水池容积的计算方法、雨水池容积计算机模拟方法等,取得如下的主要研究成果:(1)利用较容易获得的日降雨量数据作为依据,探讨了雨水池设计的降雨量资料的选样方法。经过对比分析,建议在资料年数不长或需要计算小于1年重现期的情况下,采用年多个值法,否则采用年最大值法。(2)以北京的日降雨量资料为基础数据,探讨了日降雨量的理论概率分布。结果显示降雨概率分布模型可采用对数正态分布、皮尔逊III型分布、通用极值分布等。该结果为选择日降雨量的概率分布模型提供了参考。(3)首次提出了降雨量公式的推求方法,并以北京的日降雨量资料为基础数据,根据提出的降雨量公式的推求方法,得出了北京市降雨量公式的形式D= a1+a2 (ln(P))a3,更高精度的公式表示形式为D = a1 + a2 ln( P ) + a3 (ln( P))2+…。参数确定后的降雨量公式可用于计算北京不同频率的日降雨量。笔者提出的降雨量公式的推求方法可以作为其他城市推求降雨量公式的参考。(4)在全面分析流量过程线计算方法的基础上,建议采用瞬时单位线作为流量过程线的计算方法。阐述了瞬时单位线中不完全?函数的数值算法,并通过Delphi语言编制瞬时单位线计算程序,给出了程序应用大小流域的计算实例。结果表明,本文的瞬时单位线数值算法与查表法和34点高斯积分法结果符合得很好,可以用于城市大流域或小流域的雨洪汇流的计算。(5)基于流量过程线概念和模型,探讨了洪峰流量调蓄池容积计算的流量过程线模型法。并利用SWMM模型进行了算例研究。首次利用降雨量公式、SCS雨型、瞬时单位线和SWMM模型,对防洪调蓄池的容积进行计算。与现行排水设计手册的方法相比,流量过程线模型法不仅得出了调蓄池的容积,而且还演算出调蓄池的入流过程以及整个管网系统的水力状况。并能进行超重现期校核、风险分析和防洪计算。流量过程线模型法为国内洪峰流量调蓄池的容积计算提供了新方法,弥补了现行排水设计手册中计算方法的一些不足。为调蓄池超标准设计校核和风险分析奠定了基础。(6)研究了面源污染治理雨水池容积的计算方法(分析模拟法)。根据该方法,借助SWMM模型进行算例研究,并与国内外计算方法进行综合比较。结果显示,分析模拟法能应对不同地区降雨径流污染差别和对环境保护目标的要求,能进行设计校核和超重现期风险分析,能得到雨水池入流流量过程线,这为雨水池运行控制奠定了基础。分析模拟法,为国内面源污染治理雨水池容积计算提供了新方法。改变了国内《石油化工企业给水排水设计规范》凭借经验和主观因素选择降雨量值的现状,增强了雨水池设计的科学性和合理性。(7)针对雨洪利用蓄水池容积计算,简单公式法中设计降雨厚度(降雨量)取值方法未明确的问题,研究了具体确定方法。根据设计重现期和降雨量公式来确定设计降雨厚度(降雨量),是对现行规范《建筑与小区雨水利用工程技术规范》的很好补充。基于流量过程线的概念,探讨了利用模型进行蓄水池容积计算的方法。首次通过降雨量公式、SCS雨型和SWMM模型对蓄水池容积进行计算,并通过模型模拟进行蓄水池容积设计校核,增强了蓄水池容积计算的准确性。引入设计标准(频率或重现期)的概念,为雨洪利用蓄水池进行风险分析奠定了基础。(8)初步建立了雨水池设计理论构架,内容包括设计暴雨(资料统计分析、降雨时程分配)、降雨量公式推求、流量过程线计算、雨水池容积计算、计算机模拟等。通过本研究为雨水池的容积计算提供了有效方法和技术理论参考,为科学设计雨水池奠定了基础,同时也推动了雨水池设计理论的研究和发展,为国内城市更加深入地开展雨洪管理工作奠定基础。本研究对我国新排水系统规划、设计和管理、城市防灾减灾、水污染控制和可持续发展都具有重要的理论意义和实际使用价值。

【Abstract】 Before stormwater management in China due to urban flooding and water shortage, the theory of stormwater detention is almost blank, and the storage volume calculation of stormwater detention tanks in urban drainage is with the use of the formula of the former Soviet Union. In recent years, urban rainwater utilization projects launched in many places, the design of rainwater tanks frequent involved in these projects, so researches on calculation methods of storage volume and related design contents carry out. However, research on the relevant theory of stormwater detention is very few. It will need further study, further enrichment and perfection. According to the current status of stormwater tanks design, studying the theory of design is the goal of this thesis. This study aims to contribute approaches to compute storage volume problems and on this basis to theoretical research on design of stormwater tanks.On the basis of previous studies, using the theories and basic principles of hydrology, hydraulics, mathematical statistics, and so on, the relevant theory of stormwater detention is considered, including design storm (rainfall data processing and analysis, temporal distribution), rainfall depth formula, rainfall losses, flow hydrograph, calculation methods of storage volume for different objectives, computer simulations, and so on. It is carried out by comprehensive analysis, theoretical study and example application. The main results and conclusions are as follows:(1) Rainfall data statistical method is discussed by using more easily available daily rainfall observed data. On the basis of the comparisons and estimation results, it can be concluded that, if the length of rainfall records is short or the small return period is needed, the annual multi-sampling series method is proposed, otherwise, the annual maximum series (AMS) method is proposed.(2) Based on Beijing rainfall data, research on the appropriate distributions for daily rainfall depth is carried out. The result shows that log normal, Pearson III, GEV etc may be used as the appropriate distributions for Beijing. This result gives a reference for selecting the distributions for daily rainfall depth.(3) The method and procedure of rainfall depth formula deduction is proposed. Based on Beijing rainfall data, after the proposed procedure of rainfall depth formula deduction, the rainfall depth formula is obtained as D= a1 + a2 (ln( P))a3. The method of deriving rainfall depth formula may be employed to other city or region. Rainfall depth formula with determined parameters may use to generate daily rainfall depths with different recurrence intervals.(4) Instantaneous unit hydrograph method is recommended to flow routing after the comprehensive analysis of flow routing methods. The numerical algorithm of incomplete gamma function in instantaneous unit hydrograph is presented, and the instantaneous unit hydrograph procedure was programmed using Delphi language, then two examples (small catchment and large catchment) were given. The results show the proposed algorithms have good agreement with look-up table method and 34 points Gaussian integral method. The instantaneous unit hydrograph method with proposed algorithms may be used for calculating runoff from small or large catchment.(5) The Flow Hydrograph & Model method for detention storage volume calculation, based on the flow hydrograph concept and model, is discussed. The case study is conducted using EPA SWMM. Compared with current design methods, the proposed method not only gets storage volume, but obtains the inflow hydrograph of the tank and the hydraulic status of the whole system. It also can conduct risk analysis and flood computation.The Flow Hydrograph & Model method gives a new method for China’s detention storage volume calculation and fixes the weaknesses of the design manual’s formula. It lays the foundation for high design criteria check and risk analysis.(6) The Frequency Analysis & Model method is proposed for computing treatment volume for pollution control. Through EPA SWMM, a case study is carried out. Compared with the current methods in China, the proposed method can deal with different environmental protection objectives and consider different runoff pollution water quality. It also can do design check and high return periods risk analysis and obtain the inflow hydrograph of the tank.This method gives a new method for China, and fixes the problem of selecting rainfall depth by subjectivism and arbitrariness, and gives a basis for treatment volume calculation.(7) A method is proposed for rainfall depth determination. By introducing the concept of design frequency, a rainfall depth formula is deduced. The rainfall depth is obtained from rainfall depth formula with a given return period (frequency). This increases science and rationality of storage volume calculation of storage tank for rainwater reuse. Based on flow hydrograph concept, the method using model for storage volume calculation is discussed. The volume of the storage tank is computed through rainfall depth formula, SCS rainfall distributions and SWMM. Then the design check is conducted by model simulation. This improved the accuracy of the storage volume calculation. The introduction of the concept of design criteria lays the foundation of risk analysis for the storage tank.(8) The stormwater tanks design theory has been preliminarily established, which including design storm (rainfall data processing and analysis, temporal distribution), rainfall depth formula, rainfall losses, flow hydrograph, calculation methods of storage volume for different objectives, computer simulations, and so on.This study provides effective methods and theoretical references for stormwater tanks sizing, and lays the foundation for the scientific design of stormwater tanks. The achievements in the study will promote the research and development of stormwater tanks design theory, and lay the foundation for the further work of stormwater management in China. The research work is of great theoretical and practical value to our planning, design and management of new drainage system, urban disaster prevention and reduction, water pollution control and sustainable development.

节点文献中: