节点文献

天然彩色棉品种生长生理特征及其调节研究

Study on Growth, Physiology Characteristics of Colored Cotton Cultivars and the Regulation

【作者】 张祥

【导师】 陈德华;

【作者基本信息】 扬州大学 , 作物栽培学与耕作学, 2008, 博士

【摘要】 本文以天然绿色棉品种皖棉39号、棕色棉品种湘彩棉2号为材料,并以普通白色陆地棉品种苏棉9号作为对照,探讨了2个不同色彩棉品种的棉株生长发育特点、碳氮代谢的生理特征;并从棉铃、纤维品质性状与色素形成入手,研究了天然彩色棉的棉铃、纤维品质性状、纤维色素的形成特征及其密度、氮肥、生长物质和源库等调节。主要研究结果如下:1、生长发育特征与普通白色棉不同。2个不同色彩棉品种在营养生长方面表现为株高均高于普通白棉。整个生育期的平均株高日增量较大(绿色棉为1.5 cm/d、棕色棉1.38 cm/d、普通白棉1.06 cm/d),LAI增长量、最大LAI也较高,如盛铃期(8月15日)棕色棉为5.14,绿色棉为4.3,普通白棉仅为4.12;营养器官干重高,且占有的比例大。在生殖发育方面则表现为,总果节量虽较大(绿色棉为326.00万个/公顷、棕色棉331.25万个/公顷、普通白棉仅为323.20万个/公顷),但脱落率较高,棕色棉比普通白棉高21.7%,绿色棉比普通白棉高17.1%;成铃强度低,如在优质桃形成期(7/20—8/30),棕色棉品种、绿色棉品种成铃强度分别为0.37个·株-1·d-1和0.49个·株-1·d-1,均低于普通白棉的0.94个·株-1·d-1;生殖器官干重、生殖器官与营养器官干重比例较低。在棉铃发育上,天然彩色棉棉铃铃长、最大直径、铃体积、铃壳重均表现为低于普通白棉,且铃重增长持续期也短于苏棉9号。如绿色棉、棕色棉棉铃体积分别仅为对照苏棉9号的75.4%和85.3%;铃重分别比对照低0.72g和0.58g。2、碳代谢能力弱,中后期氮代谢旺盛。在氮代谢方面,2个不同色彩棉品种的叶片硝酸还原酶(NR)活性、丙酮酸转氨酶(GPT)活性、游离氨基酸、全氮含量、可溶性蛋白含量表现为在生育前期(7/20)低于苏棉9号,而中后期(8/15)高于苏棉9号。如:吐絮期(8/30),绿色棉和棕色棉功能叶中全氮含量分别比普通白色陆地棉高7.2、10.3个百分点。在碳代谢方面,天然彩色棉整个生育期功能叶中叶绿素含量、可溶性糖含量、蔗糖转化酶活性、净光合速率均低于对照白棉品种苏棉9号。如:吐絮期(8/30),绿色棉和棕色棉功能叶中可溶性糖含量分别比普通白棉低9.9、26.4个百分点。此外,2个不同色彩的天然彩色棉品种在整个生育期功能叶碳氮比均低于普通白棉品种,如盛花期(7/20),绿色棉和棕色棉分别比对照苏棉9号降低了48.2%、19.9%。3、棉纤维品质性状形成速度慢、纤维细胞相关生理活性低。棕色棉纤维长度、比强度、马克隆值、成熟度系数分别只有苏棉9号的95.5%、88.4%、89.2%、95.9%;绿色棉仅为苏棉9号的92.4%、77.4%、87.5%、92.5%。由纤维品质性状形成动态进一步表明,湘彩棉2号和皖棉39号花后10-30 d纤维长度增长速率分别为0.89 mm/d、0.85 mm/d,低于对照苏棉9号的0.98 mm/d;马克隆值、成熟度系数一直低于白棉,且差异主要在花后30 d内。由Richard方程模拟参数揭示:天然绿棉色、棕色棉纤维长度、马克隆值、成熟度系数形成的初值参数(b)、累积速率参数(K)均明显低于普通白棉,而且差异主要发生于纤维发育的前中期。纤维细胞发育过程中相关生理活性表明,与普通白色棉苏棉9号相比,2个不同色彩的天然彩色棉品种棉铃对位叶叶绿素含量(SPAD值)低,且花后30-40天叶绿素下降速率快;棉铃对位叶中蔗糖转化酶活性、铃壳和纤维中ATP酶活性、纤维中SS活性、UDPG焦磷酸化酶活性均较低,如花后20天,绿色棉叶片蔗糖转化酶活性、纤维中ATP酶分别仅为普通白棉的89.2%、42.2%。4、与棕色棉湘彩棉2号相比,绿色棉皖棉39号营养生长和生殖发育更不平衡,碳氮生理代谢协调程度更低。在氮代谢方面,绿色棉皖棉39号开花后功能叶中GPT活性、全氮含量、可溶性蛋白含量一直低于棕色棉。如:盛花期(7/20),绿色棉全氮含量比棕色棉低4.1个百分点。在碳代谢方面,绿色棉开花后功能叶中叶绿素含量、可溶性糖含量、叶片净光合速率均低于棕色棉。如:盛花期(7/20)绿色棉可溶性糖含量比棕色棉低14.1%。由碳氮比进一步表明,绿色棉皖棉39号在初花期(7/5)、盛花期(7/20)、始絮期(8/30)功能叶中C/N低于棕色棉湘彩棉2号,绿色棉分别为8.03、13.45、15.30;棕色棉分别为12.42、15.02、18.21。5、绿色棉色素含量低于棕色棉,并与内源激素ABA、GA3诱导、色素合成相关物质及酶活性密切相关。测定表明,吐絮时,棕色棉湘彩棉2号每0.1g纤维中提取液吸光度为0.418,绿色棉皖棉39号仅为0.385。在整株纤维的色素分布上,也是绿色素的色素形成慢,含量低,如棕色棉中部内、外围纤维中色素含量分别比绿色棉高4.60、4.56个百分点。且绿色棉色素不稳定,容易分解,如绿色棉色素提取液在阳光暴晒5h后,色素吸光度下降了0.221,而棕色棉仅下降0.113。天然棕色棉花后40天纤维中ABA、GA3含量明显高于绿色棉,如棕色棉纤维中ABA含量比绿色棉高46.77 ng·g-1·fw-1,GA3含量比绿色棉高137.2 ng·g-1·fw-1,与色素含量表现一致。相关分析表明,花后40天纤维中ABA、GA3含量分别与成熟期纤维中色素含量呈显著和极显著线性正相关(r=0.6668*、r=0.7993**),对纤维中单宁、PAL活性测定表明,天然绿色棉一直低于棕色棉,如花后10天,皖棉39号纤维中PAL活性比湘彩棉2号低30.8单位·g-1·fw-1·h-1。这与纤维中色素含量表现一致。6、密度37500株/ hm2、施氮量为225 kg/hm2条件,有利于天然棕色棉合理群体的形成,提高产量和纤维品质。如该密肥条件,能有效地调节棕色棉株高和LAI增长,最终株高控制在100cm左右,最大LAI(盛铃期8/15)分别为4.17;在生殖生长方面有利于天然彩色棉棉株个体生殖器官干重的积累,促进铃数的形成,提高成铃强度、成铃率、铃重及衣分并可降低脱落率,如湘彩棉2号在此密肥水平下,脱落率为48.2%,分别比密度37500株/ hm2、施氮量0 kg/hm2,密度37500株/ hm2、施氮量375 kg/hm2水平低29.8%、23.0%;产量分别增加了24.6%、1.8%。此外,该密肥水平最有利于棕色棉湘彩棉2号纤维品质的形成及整株纤维品质的提高。如该密肥水平棉株中部纤维长度、比强度、马克隆值、成熟度系数分别比密度37500株/ hm2、施氮量为0 kg/hm2条件下提高了3.8%、15.8%、16.9%、15.7%;比强度、马克隆值、成熟度系数比密度37500株/ hm2、施氮量为375 kg/hm2条件下提高了6.4%、5.4%、1.3%。7、生长物质DPC、DTA-6、GA3能有效协调碳氮代谢,促进棉铃发育,提高彩色棉生理活性,改善纤维品质。GA3处理、DTA-6处理均显著的提高了天然绿色棉皖棉39号和棕色棉湘彩棉2号的棉铃体积、单铃重。如GA3使得绿色棉体积增加4.9 cm3、棕色棉体积增加3.5 cm3;GA3使得绿色棉单铃重增加0.78 g、DTA-6使得棕色棉单铃重增加0.58 g。DPC、DTA-6、GA3处理均明显提高了绿色棉和棕色棉纤维长度、比强度、马克隆值、成熟度系数并且可以缩小整株纤维品质性状的差异。如皖棉39号在施用GA3后纤维长度、比强度、马克隆值、成熟度系数分别比对照增加了2.2、26.7、5.0、8.1个百分点;棕色棉分别比对照增加了6.0、5.5、13.9、9.4个百分点。研究结果进一步表明,3种生长物质处理后棉铃对位叶叶绿素含量、蔗糖转化酶活性、纤维腺苷三磷酸(ATP)酶活性、SS酶活性、UDPG焦磷酸化酶活性及相关激素含量明显提高。如:花后20天,绿色棉DPC、DTA-6、GA3处理后纤维中ATP酶活性,分别比对照提高了3.10 umol·gfw-1·h-1、3.96 umol·gfw-1·h-1、6.34 umol·gfw-1·h-1。DPC、DTA-6、GA3能有效的调节2个不色彩棉品种的碳氮代谢强度,并协调碳氮代谢平衡。在氮代谢方面,DPC、DTA-6、GA3处理提高了天然彩色棉前期N代谢水平,DPC能降低了后期N代谢能力。在碳代谢方面,DPC、DTA-6、GA3处理可以有效调节绿色棉、棕色棉在盛铃期、始絮期功能叶中碳代谢强度,提高其碳代谢能力,如:绿色棉DPC、DTA-6、GA3处理后功能叶可溶性糖含量分别比对照提高了6.0%、20.5%和14.0%;棕色棉分别提高了12.5%、8.0%、28.5%。在碳氮代谢平衡方面,DPC、DTA-6、GA3处理可以有效的调节天然绿色棉、棕色棉在盛铃期、始絮期功能叶中碳氮比,促进天然彩色棉生育后期生殖器官的发育。如:始絮期(8/30),绿色棉3种生长物质处理后可溶性糖与全氮比值分别提高了53.3、46.0、49.5个百分点;棕色棉分别提高了9.8、5.3、7.2个百分点。3个生长物质中以DPC、GA3效果最为明显。8、适当去蕾有利于天然彩色棉棉铃发育、纤维品质性状改善及生理活性提高。如:绿色皖棉39号棉去除整株1/2、1/4蕾量处理单铃重分别比对照增加了1.346g、1.051g;棕色棉湘彩棉2号比对照增加了0.622g、0.313g。去蕾使得纤维品质性状改善,纤维长度、比强度、马克隆值、成熟度系数都明显增加,且以绿色棉增加幅度较大。如吐絮时,绿色棉去除整株1/2蕾量处理纤维长度、比强度、马克隆值、成熟度系数分别比对照增加了14.9、11.0、18.7、16.2个百分点;棕色棉则分别比对照增加了8.6、6.5、11.4、11.8个百分点。且去蕾后,棉铃对位叶叶绿素含量、蔗糖转化酶活性、纤维腺苷三磷酸(ATP)酶活性、SS酶活性、UDPG焦磷酸化酶活性及相关激素含量明显提高。如:花后10天,皖棉39号去除整株1/2和1/4蕾量后棉铃对位叶中蔗糖转化酶活性分别比对照提高了36.6%、15.1%,湘彩棉2号分别比对照提高了76.1%、56.7%。9、DPC、GA3和DTA-6、去蕾及轻度遮光均可提高天然彩色棉纤维中色素、单宁含量及PAL活性。如与各自对照相比,绿色棉、棕色棉喷施GA3处理后成熟时纤维中色素含量分别提高了23.9和6.5个百分点;去除整株蕾数的1/2处理分别提高了54.3%和9.8%;轻度遮光处理分别提高了9.5和4.3个百分点。10、施用FeCl3可以有效增强2个不同颜色天然彩色棉品种纤维中色素的光稳定性。盛花期喷施FeCl3,可促进天然彩色棉色素含量的增加。如吐絮时,绿色棉皖棉39号、棕色棉湘彩棉2号处理分别比各自对照提高了4.4%、3.6%;此外FeCl3处理后,天然彩色棉纤维中色素稳定性有了较大幅度的提高,下降速度减慢。如在太阳光照射5h后,绿色棉皖棉39号、棕色棉湘彩棉2号纤维中色素吸光度分别下降0.061和0.062,2品种各自对照分别下降0.221和0.113。

【Abstract】 The study was undertaken on nature-colored cotton cultivars, which were Wuan mian No.39 (green cotton cultivar) and Xiang cai No.2 (brown cotton cultivar) during 2006 and 2007 growing seasons at the Jiangsu Provincial Key Laboratory of Crops Genetic and physiology, Yangzhou University, Yangzhou, China. In the study, Wuan mian No.39, Xiang cai No.2 and Su mian No.9 were grown to investigate the characteristics of development, the carbon and nitrogen metabolism, and to research the adjustable approach and physiological mechanism of improving fiber quality and pigment in colored cotton fiber. The main results were as follows:1. The characteristics of development changed. In the aspect of vegetative growth, the colored cotton had bigger growth rate for plant height and LAI than Su mian No.9. For example, the speed of plant height growth for green cotton, brown cotton cultivar and the control were 1.50 cm/d, 1.38 cm/d and 1.06 cm/d respectively. At the peak boll period, LAI were 5.14, 4.3 and 4.12 for Xiang cai No.2, Wuan mian No.39 and Su mian No.9 respectively. In the aspect of reproductive growth, the colored cotton had more fruit-nodes (3.26, 3.31 millions·hm-2 for green and grown cotton) than the control (3.23 millions·hm-2). However, the green and grown cotton had higher shedding rate of buds and bolls, and fewer bolls per plant, and lower intensity of boll setting, and lower vegetative dry matter weight, the ratio of reproductive organs and vegetative organs dry matter weight. The boll development characteristics were different between colored cotton and white cotton. In comparison with the control (Su mina No.9), the boll length, the boll diameter, the boll volume, the boll husk weight and the boll weight were lower for colored cotton. For example, the boll volume of green and brown cotton was only 75.4%, 85.3% of the white cotton’s.2. Colored cotton had weak carbon physiological metabolism, but strong nitrogen physiological metabolism at later growing stage. The colored cotton had weaker NR activity, GPT activity, and the content of amino acid, total nitrogen and the soluble protein in functional leaf before peak flower period. However, they had stronger nitrogen physiological metabolism than the white cotton at later growing stage. For example, the content of total nitrogen in functional leaf enhanced by 7.2%, 10.3% for green and brown cotton respectively in comparison with Su mina No.9 at boll open stage. In whole growing stage, the colored cotton had lower content of chlorophyll, soluble sugar, weaker net photosynthetic intensity, and lower activity of invertase in functional leaf. Compared with the control, the C/N (the content of soluble sugar/ the content of total nitrogen) in functional leaf was lower for the colored cotton.3. The speed of fiber quality development and physiological activities of fiber cell for the colored cotton were lower than those of the white cotton. The fiber length, the fiber strength, the fiber micronair, and the fiber maturity of Xiang cai No.2 were 95.5%、88.4%、89.2%、95.9%of Su mian No.9’s. Dynamic formation of the fiber quality indicated that the development speed of the fiber length for Xiang cai No.2 and Wuan mian No.39 were 0.89 mm/d and 0.85 mm/d which were lower than 0.98 mm/d of Su mian No.9. The lower fiber micronair and the fiber maturity for the colored cotton were due to the slower accession during 0 to 30 days post anthesis (DPA). The parameters of the Richards equation indicated that the beginning parameter (b) and accumulative rate parameter (K) of the fiber length, the fiber micronair, and the fiber maturity for the colored cotton were lower than those of the white cotton. The results of the physiological activities of fiber cell were as followed: The leaf chlorophyll content, the fiber and boll husk ATPase activities, the fiber Sucroase Synthase (SS) activities, the fiber UDPG-Pyrophosphorylase (UDPP) activities for colored cotton were lower than those of the white cotton. For example, the fiber ATPase activity for Wuan mian No. 39 was 42.2% of that of Su mian No.9.4. In comparison to Xiang cai No.2, equilibrium between vegetative and reproductive growth for Wuan mian No.39 was worse, neither the coordination carbon and nitrogen metabolism. After flower period, the content of total nitrogen, soluble protein and the GPT activity for Wuan mian No.39 were lower than those for Xiang cai No.2. For example, the content of total nitrogen reduced by 4.1 percentage for Wuan mian No.39 in comparison to Xiang cai No.2 at peak flower period. The contents of chlorophyll, soluble sugar, and net photosynthetic intensity for Wuan mian No.39 were lower than those for Xiang cai No.2. Compared with Xiang cai No.2, the content of soluble sugar reduced by 14.1% for Wuan mian No.39. The C/N for Wuan mian No.39 at the early flowering period (8.03), the peak flower period (13.45), the boll opening period (15.30) were lower than those for Xiang cai No.2, which were 12.42, 15.02, 18.21.5. The pigment in the fiber of Xiang cai No.2 was higher than that of Wuan mian No.39. It had great concern with the ABA, GA3 content and other relevant enzymes activities. The results showed that the pigment content (estimated by absorbance reading at 412 nm for distillation solution in 0.1g fiber) for Xiang cai No.2 was 0.418, for Wuan mian No.39 was 0.385. And the pigment of green cotton was unstable and of photo-degradation. For example, the absorbance reading of pigment in green and grown cotton fiber reduced by 0.221, 0.113 after 5 hours under the sunlight. The brown cotton had more content of fiber ABA and GA3 at 40 DPA than green cotton. And there were significant positive correlation between the pigment content and the content of ABA, GA3 (r=0.6668*, r=0.7993**). The content of fiber tannin and the Phenylalanine Ammonia-lyase (PAL) activity for green cotton were lower than those for brown cotton. For example, the PAL activity for green cotton reduced by 30.8 Unit·g-1·fw-1·h-1 in comparison with brown cotton. And the PAL activity was uniformity to the pigment content.6. With the density of 37500 plants/hm2 and the fertilizer of N of 225 kg/hm2, the brown cotton maintained the population at reasonable range and the yield, the fiber quality enhanced. That density and fertilizer level adjusted the development of plant height and LAI. The final plant height was 100.3 cm. The maximum LAI was 4.17. In the aspect of reproductive growth, dry matter accumulation of individual plants, the number of bolls, the intensity of boll setting, the boll weight and the pint enhanced under that density and the fertilizer. The shedding rate of buds and bolls reduced. For example, the shedding rate of buds and bolls reduced by 29.8%, 23.0% respectively in comparison to the density of 37500 plants/hm2, the fertilizer of N of 225 kg/hm2 and the density of 37500 plants/hm2, the fertilizer of N of 0 kg/hm2; the yield increased by 24.6%, 1.8% respectively.7. Three kinds of growth regulators (DPC, DTA-6, GA3) could adjust the carbon and nitrogen physiological metabolism, improve the development of bolls, enhance the physiological activities, improve the fiber quality. The DTA-6, GA3 enhanced the boll volume and weight. For example, the treatment of GA3 sprayed increased the boll volume by 4.9 cm3 and 3.5 cm3 respectively for green and grown cotton. The treatment of GA3 sprayed enhanced the boll weight by 0.78g for green cotton. The treatment of DTA-6 sprayed increased the boll weight by 0.58g for brown cotton. DPC, DTA-6, GA3 enhanced the fiber length, the fiber strength, the fiber micronair, and the fiber maturity of colored cotton and decreased the difference at different positions. The treatment of GA3 sprayed enhanced the fiber length, the fiber strength, the fiber micronair, and the fiber maturity by 2.2, 26.7, 5.0, 8.1 percentage points respectively for green cotton, and 6.0, 5.5, 13.9, 9.4 percentage points respectively for grown cotton. Treatments of three kinds of growth regulators sprayed enhanced the leaf chlorophyll content, the fiber invertase activities, the fiber ATPase activities, the fiber Sucroase Synthase (SS) activities, the fiber UDPG-Pyrophosphorylase (UDPP) activities and the endogenous hormones content. Take the ATPase activities for example, the treatment of DPC, DTA-6, GA3 sprayed enhanced by 3.10 umol·gfw-1·h-1、3.96 umol·gfw-1·h-1、6.34 umol·gfw-1·h-1 respectively for green cotton in comparison with the control.DPC, DTA-6, GA3 could adjust the intensity of the carbon and nitrogen physiological metabolism and the coordination between them. Firstly, DPC, DTA-6, GA3 enhanced the nitrogen physiological metabolism at early growing stage, but DPC decreased it at late growing stage. Secondly, DPC, DTA-6, GA3 enhanced the carbon physiological metabolism at peak bolling and the boll opening stage. Treatments of DPC, DTA-6, GA3 sprayed enhanced the soluble sugar content by 6.0%, 20.5%, 14.0% respectively for green cotton and by 12.5%, 8.0%, 28.5% respectively for brown cotton at peak bolling stage. Thirdly, DPC, DTA-6, GA3 adjusted the C/N at peak bolling and the boll opening stage, improved the development of reproductive organs at late growing stage. At the boll opening stage, the treatments of DPC, DTA-6, GA3 sprayed improved the C/N by 53.3, 46.0, 49.5 percentage points respectively for green cotton and by 9.8, 5.3, 7.2 percentage points respectively for brown cotton, especially DPC, GA3 got the better effect.8. Cutting off appropriate buds treatment improved the boll development, enhanced the fiber quality and the physiological activities for colored cotton. The treatments of cutting of the half and quarter of whole buds in plant enhanced the boll weight by 1.346g and 1.051g respectively for green cotton, by 0.622g, 0.313g respectively for brown cotton. The treatment of cutting off buds improved the fiber length, the fiber strength, the fiber micronair, and the fiber maturity, especially for green cotton. The treatment of cutting off half of whole buds in plant enhance the fiber length, the fiber strength, the fiber micronair, and the fiber maturity by 14.9, 11.0, 18.7, and 16.2 percentage points respectively for green cotton, by 8.6, 6.5, 11.4, 11.8 percentage points respectively for brown cotton. The treatment of cutting off buds increased the leaf chlorophyll content, the fiber invertase activities, the fiber ATPase activities, the fiber Sucroase Synthase (SS) activities, the fiber UDPG-Pyrophosphorylase (UDPP) activities and the endogenous hormones content. For example, the treatments of cutting of half and quarter of whole buds in plant increased the fiber SS activities by 36.6% and 15.1% respectively for green cotton, by 76.1% and 56.7% respectively for brown cotton.9. DPC, DTA-6, GA3, cutting off buds and the slight shading treatment increased the content of pigment and tannin, the PAL activities in fiber. The treatment of GA3 sprayed enhance the pigment content in fiber by 23.9 and 6.5 percentage points for green and brown cotton respectively. The cutting off the half of whole buds in plant treatment increased the pigment content by 54.3 and 9.8 percentage points for green and brown cotton respectively. The slight shading treatment enhanced the pigment content by 9.5 and 3.6 percentage points for green and brown cotton respectively.10. The treatment of Fecl3 sprayed improved the stability of the pigment in two colored cotton varieties fiber. Firstly, Fecl3 sprayed treatment enhanced the pigment content in fiber by 4.4% and 3.6% respectively for green and brown cotton. Secondly, the treatment of Fecl3 sprayed reduced the decomposing of the pigment in colored cotton fiber. After 5 hours under the sunlight, the absorbance reading of pigment in fiber decreased only 0.061 and 0.062 respectively for green and brown cotton.

  • 【网络出版投稿人】 扬州大学
  • 【网络出版年期】2009年 03期
节点文献中: