节点文献

聚合物/聚合物纳米复合粒子及其复合材料的制备与结构控制

From Polymer Nano Composite Particles to Bulk Nanocomposites: The Preparation and Structure Control

【作者】 陈文萍

【导师】 朱美芳;

【作者基本信息】 东华大学 , 材料科学与工程, 2006, 博士

【摘要】 将纳米粒子加入到聚合物中,不仅可以改善材料的物理机械性能,而且可以赋予其许多独特的功能。但是,普通的共混方法很难使纳米粒子均匀地分散在聚合物基体中,有时即使实现了均匀分散,但在加工或使用过程中己分散的纳米粒子又常常会发生二次团聚,使得纳米复合材料的特点无法充分实现。因此,如何实现纳米粒子在基体中的均匀稳定分散,是制备性能优异的纳米复合材料必须解决的首要问题。国内外不少研究组通过通过溶胶—凝胶法、反应器就地合成法、插层法(包括原位插层聚合、溶液插层和熔融插层)、或对纳米粒子表面改性后与聚合物直接混合等方法,实现了无机纳米粒子在聚合物中的均匀稳定分散。与无机纳米材料和聚合物基无机纳米复合材料相比,聚合物纳米材料具有更好的分子可设计性和结构可控性,更容易制备出具有各种独特性能的新材料,满足不同领域的特殊要求。本文的研究目标是通过设计合成具有可控结构的聚合物纳米复合粒子,并将纳米复合粒子直接加工制备块体聚合物/聚合物纳米复合材料,有效解决聚合物纳米粒子在基体中的均匀稳定分散性难题。研究思路和内容是:首先通过微皂乳液聚合制备交联的聚甲基丙烯酸甲酯(PMMA(CL))纳米粒子,研究聚合条件对PMMA乳胶粒子尺寸及其尺寸分布的影响。然后采用种子乳液聚合制备交联聚甲基丙烯酸甲酯/聚(丙烯腈—甲基丙烯酸甲酯)(PMMA(CL)/P(AN-MMA))纳米复合粒子,以及具有不同界面结构的交联聚甲基丙烯酸甲酯/聚苯乙烯(PMMA(CL)/PS)纳米复合粒子,研究聚合反应过程中各种热力学参数和动力学参数对复合粒子形态结构的影响。进而对具有不同界面结构的PMMA(CL)/PS系列纳米复合粒子直接进行熔融加工,制备出块体聚合物纳米复合材料。通过透射电镜(TEM)观察和动态流变实验,进一步研究聚合物/聚合物块体纳米复合材料的形态结构及其动态流变行为,探讨聚合物纳米粒子在基体中的稳定分散机理。研究得到了如下主要结论:(1)选择适当的聚合条件,通过微皂乳液聚合成功地获得了单分散性较好的PMMA纳米粒子。如在反应温度80℃,单体浓度小于等于10g/100mlH2O,表面活性剂与单体的重量比为0.005~0.025的条件下,通过乳液聚合制备出的PMMA纳米粒子数均粒径在40~75nm,Dv/Dn≤1.18,且单体的转化率可达94%以上。(2)通过控制热力学因素和动力学因素进行聚合物/聚合物纳米复合粒子的可控合成。研究结果表明,通过控制二阶单体加入方式,采用饥饿喂料,能够从动力学上“硬性”控制复合粒子的形态结构,使热力学平衡态结构为半球状的PMMA(CL)/P(AN-MMA)纳米复合粒子(其中AN和MMA的重量比为9:1)最终形成核壳结构。研究还表明,二阶聚合时选用油溶性引发剂可避免水溶性较大的单体AN和MMA单独生成次级粒子。对于热力学平衡态结构为反向核壳结构的PMMA(CL)/PS复合体系,通过在高交联度的PMMA(HC)纳米种子粒子外增加一薄层低交联度的聚甲基丙烯酸丁酯(PBA(LC)),能够显著提高苯乙烯在其表面的接枝率,有效地降低核壳聚合物间的界面张力,从而得到具有核壳结构的PMMA(HC)/PBA(LC)/PS纳米复合粒子。通过在核壳聚合物之间引入梯度共聚物P(MMA-St),也可以有效降低核壳聚合物之间的界面张力,制备出具有完美核壳结构的PMMA(HC)/P(MMA-St,)/PS纳米复合粒子。(3)聚合物/聚合物核壳纳米复合粒子形态结构的准确表征。透射电镜(TEM)可以直观而有效地表征复合粒子的形态结构,但能否找到合适的选择性染色剂,增加两相之间的对比度是决定其适用性的关键。由于常用的选择性染色剂四氧化锇(OSO4)和四氧化钌(RuO4)对PMMA和P(AN-MMA)均不能染色,为此必须寻找新的选择性染色剂。研究证明,以pH值为6.4的磷钨酸水溶液(浓度wt1.5%)为选择性染色剂,能够准确表征PMMA(CL)/P(AN-MMA)(其中AN和MMA的重量比为9:1)复合粒子的形态结构,该研究成果已作为封面论文2005年发表在Macromol.Mater.Eng.上。(4)透射电镜研究的结果表明,PMMA(HC)/PS和PMMA(HC)/PBA(LC)/PS纳米复合粒子直接熔融加工制备成块体纳米复合材料时,PMMA(HC)纳米粒子能够均匀稳定地分散在PS形成的基体中;而将PMMA(HC),P(MMA-St),/PS纳米复合粒子直接制备成块体纳米复合材料时,尽管界面张力较小,但PMMA(HC)纳米粒子在基体中的分散仍很不稳定,无论在静态熔融条件下,还是在螺杆中熔融挤出加工时,均会发生明显的二次团聚。动态流变研究表明,由纳米复合粒子直接制备的聚合物/聚合物纳米复合材料熔体为切力变稀流体。与无机纳米粒子/聚合物复合体系类似,当聚合物纳米粒子含量超过一定值后,聚合物/聚合物纳米复合体系在低频区也会表现出类固体行为,但其逾渗值在10%~15%之间,明显高于无机纳米粒子/聚合物复合体系。这说明聚合物/聚合物纳米复合材料的可加工性优于无机纳米粒子/聚合物复合体系。(5)聚合物/聚合物纳米复合材料中纳米分散相的稳定机理。纳米复合材料中分散相的尺寸很小,熔融状态下,分散相粒子的布朗运动速度很快。特别是当纳米粒子的体积含量达到或超过10%后,在熔融加工时除了界面张力会引起分散相粒子的凝聚外,布朗运动的影响也不容忽视。因此,要制备结构稳定的聚合物/聚合物纳米复合材料,除了要降低分散相与基体的界面张力外,还必须降低分散相的布朗运动速度、或使分散相粒子间存在足够的斥力以阻止粒子间因布朗运动而引起的碰撞凝聚。研究表明,在种子乳液聚合制备复合粒子的过程中,由于自由基向种子聚合物大分子的转移,使得PMMA(HC)/PS和PMMA(HC)/PBA(LC)/PS体系中,PMMA(HC)纳米粒子表面接枝有一定数量的PS大分子,而PMMA(HC)/P(MMA-St,)/PS复合体系中PMMA(HC)粒子上接枝的是P(MMA-St)共聚物。由于前两个体系中纳米粒子表面接枝的大分子与连续相PS结构相同,相容性好,其分子构象在熔融的PS基体中较为伸展,这种伸展的接枝大分子不仅可以增加粒子的流体力学尺寸,降低粒子布朗运动的速度,特别是当两个纳米粒子相互接近时会产生足够的空间位阻效应,使其不易团聚,因此在这两个体系中PMMA(HC)纳米粒子的分散相当稳定。而第三个体系中纳米粒子表面接枝大分子与基体的相容性较差,其大分子则坍塌于粒子表面,所以不能有效阻止PMMA(HC)纳米分散相的团聚。因此,由纳米复合粒子制备聚合物/聚合物纳米复合材料时,纳米粒子表面接枝大分子在熔融的聚合物基体中的构象是决定纳米粒子能否均匀稳定分散的关键。即聚合物/聚合物纳米复合材料中纳米粒子的稳定机理类似于聚合物稳定剂对胶体体系的稳定机理。

【Abstract】 The study of nanocomposite materials offers the possibility of substantialimprovements in material properties, ranging from mechanical to functionalproperties, with nanoparticles dispersed in polymer matrices. Unfortunately, ithas often proved difficult to form stable uniform dispersion of nanoparticles inpolymer matrices, slowing the rate of progress. In order to obtain polymernanocomposites with desired properties, the key problem is how to realize andkeep the stable uniform dispersion of nanoparticles in matrices.In-situ polymerization and melt intercalation solve the dispersion ofnaturally layered inorganics in polymer matrices. However, there is a limitednumber suitable for nanocomposite preparation. Comparing with inorganicmaterials, it is easier to design and control the structure of macromolecules.Polymer nanoparticles and nanocomposites with various novel properties can beobtained by different methods and procedures of polymerization.The aim of this research is to resolve the problem of the stable uniformdispersion of nanoparticles in polymer matrices. It is focused on the preparationand structure control of polymer nanoparticles, nano composite particles andbulk nanocomposites. The approach is to synthesize crosslinking poly(methylmethacrylate)(PMMA(CL)) nanoparticles at first, then to synthesize nanocomposite particles by emulsion polymerization with the nanoparticles as seeds.By directly melting the nano composite particles, the shell polymer forms thecontinuous phase and the PMMA(CL) nanoparticles uniformly and stablydisperse in the matrix. In this paper, the influences of various polymerizationparameters on the size, its distribution and morphology of polymer nanoparticles, nano composite particles are discussed. Then the influences of the interfacialstructure of nano composite particles on bulk nanocomposites structure arediscussed. Furthermore, the mechanism of stable uniform dispersion of polymernanoparticles in matrix is explored. The research results are as follows:(1) By controlling the proper polymerization parameters, PMMAnanoparticles with well monodispersity can be successfully obtained by emulsionpolymerization at very low surfactant level. For example, when thepolymerization conditions, are controlled as: reaction temperature 80℃, themonomer contration<10g/100mlH2O, and the weight ratio of the monomer tosurfactant 0.005~0.025, PMMA nanoparticles can be prepared, whose averagenumber size is between 40~75nm, PDI<0.1, Dv/Dn≤1.18, and the conversion ofthe monomer is more than 94%.(2) The morphology of composite particles can be controlled bythermodynamic and kinetic factors during the seeded emulsion polymerization.The equilibrium morphology of PMMA(CL)/P(AN-MMA)(shell withAN/MMA=9/1 weight ratio) composite particles synthesized by batch-seededemulsion polymerization should be hemisphere structure when SDS is used assurfactant. However, the morphology of the composite particles can change fromhemisphere, sandwich to core-shell structure with the slowing of the adding rateof the second stage monomer. And though the equilibrium morphology ofPMMA(CL)/PS composite particles should be inverted core-shell structure, asthe matter of fact, the final morphology can be core-shell structure by changingthe interfacial structure. When there is low crosslinking poly(butyl acrylate)PBA(LC) interfacial layer which leads to more PS grafted on PMMA(HC) coreand decreases the interfacial tension between core and shell, or when there isgradient copolymer P(MMA-St) interfacial layer which also decreases theinterfacial tension between core and shell, PMMA(CL)/PS composite particleshave core-shell structure.(3) In order to characterizing the morphology of polymer composite particles by transmission election microscopy (TEM), it is necessary to enhanceimage contrast for polymers by using a selective staining agent. Unfortunately,neither(OsO4) nor (RuO4) is suitable for PMMA/PAN composite particles. In ourresearch, it is founded that pH 6.4 PTA solution can be a selective staining agentin the TEM for PMMA/PAN and PMMA/P(AN-MMA)(shell with AN/MMA=9/1weight ratio) composite particles.(4) Neither Brownian motion nor molecular forces between nanoparticles tothe coalescence can be ignored because the size of dispered phase is very small,and the distance of a nanoparticle from its nearest neighbour is also very small inpolymer/polymer nanocomposites. In order to keep the stable uniform dispersionof polymer nanoparticles in matrix, the coalescence resulting from Brownianmotion should be prevented besides decreasing the interfacial tension. Theexperiments show that PMMA(HC) nanoparticles can stably dispersed in thematrices without obvious coalescence for PMMA(HC)/PS andPMMA(HC)/PBA(LC)/PS bulk nanocomposites, but they happen seriouscoalescence in the matrix for PMMA(HC)/P(MMA-St)/PS. The reason is that thegrafted macromolecules on PMMA(HC) nanoparticles are polystyrene(PS) forPMMA(HC)/PS and PMMA(HC)/PBA(LC)/PS, which have stretchedconformation in melt PS matrix, and can provide enough steric stabilization toprevent the coalescence. And the grafted macromolecules on PMMA(HC) nano-particles are gradient copolymer P(MMA-St) for PMMA(HC)/P(MMA-St)/PS,the macromolecular chains collapse on the nanoparticles. The stable uniformdispersion of polymer nanoparticles in matrix should be contributed to the stericstabilization of nanoparticles resulting from the grafted macromolecules.(5) Polymer/polymer nanocomposites show that the viscosityη* decreaseswith the increasing of the shear stress. And they also show a solidlikeviscoelastic behavior when the volume fraction of polymer nanoparticles isbetween 10% and 15%, which is much higher than inorganicnanoparticles/polymer nanocomposites. It means that polymer/polymer nanocomposites have better processability than inorganic nanoparticles/polymernanocomposites.

  • 【网络出版投稿人】 东华大学
  • 【网络出版年期】2009年 06期
  • 【分类号】TB383.1
  • 【被引频次】1
  • 【下载频次】694
节点文献中: