节点文献
光伏建筑的性能优化及其与城市微气候的相互影响
Performance Optimization of Building Integrated Photovoltaics and Its Interaction with Urban Microclimate
【作者】 田玮;
【导师】 王一平;
【作者基本信息】 天津大学 , 化工过程机械, 2006, 博士
【摘要】 能源和环境是可持续发展的两大主题,光伏建筑一体化的出现使得建筑物由单纯的耗能型变为供能型,缓解了能源和环境之间的矛盾。建筑热环境是城市热环境的重要组成部分,城市热环境反过来也会影响建筑热环境。在城市区域中,光伏技术通常以光伏建筑一体化的形式来实现。因此,光伏系统对于建筑和城市热环境都会有影响。本文主要分为两个部分,分别从建筑热环境和城市热环境两个角度,分析光伏技术与热环境的相互影响。第一部分,从建筑热环境的角度,研究不同的光伏屋顶安装形式对于建筑冷热负荷和光伏组件发电量的影响。首先建立了带通风流道光伏屋顶的理论模型,包括光伏屋顶传热模型、光伏组件电性能模型和通过屋顶传热的冷热负荷模型,同时也建立了封闭通道和直接放置两种安装方式的光伏屋顶模型。然后搭建了光伏屋顶与普通屋顶的实验台,以考察不同安装方式的光伏屋顶系统热性能,并验证理论模型的正确性。实验和理论结果都表明,由于有更多的光伏组件发电量和更低的冷热负荷,夏季通风流道和冬季封闭流道的光伏屋顶组合,有最高的能量净收益。夏季,增大通风流道的间距和降低流道内屋顶侧表面的发射率,都会降低通过光伏屋顶的冷负荷,对于光伏组件发电量则有不同的影响,前者对增加电量输出有益,后者则因为减少了光伏组件的辐射换热量而降低了电量输出。同时,屋顶本身的热阻也是一个影响系统能量净收益的重要因素。第二部分研究了光伏建筑与城市微气候的相互作用。一方面采用实测的城市和郊区气候数据,根据三种不同的光伏组件电性能模型,研究了城市气候对于光伏组件性能的影响。结果表明,由于城市污染造成了城市太阳辐照量的减少,导致城市光伏组件与郊区的发电量相比有明显降低。另外,城市风速的降低、城市气温的增加、城市太阳辐照量和辐照成份的改变都会影响城市光伏组件转换效率。另一方面建立了安装光伏组件后的城市街谷能量平衡模型PTEBU,以分析光伏建筑对于城市街谷温度和能量通量密度的影响,模型主要包括光伏组件传热模型、光伏组件电性能模型、建筑能耗模型和城市冠层能量平衡模型。安装通风流道的光伏屋顶和光伏墙体后,对于城市表面型热岛有明显的降低作用,夏季的影响要大于冬季,但对空气型热岛没有太大的影响。安装光伏组件前建筑的表面吸收率,对于安装光伏组件后街谷系统的性能变化有明显的影响。研究还表明,光伏效率的提高不仅有更多的电能输出,也进一步降低了城市表面型热岛和空气型热岛。
【Abstract】 Energy and environment are major issues in this world today and are essential for sustainable development. BIPV (Building Integrated Photovoltaics) has progressed in the past years and become an element to be considered in city planning. The paper consists of two parts. Part one discusses the influence of different integration PV roof on the PV power output and the building cooling load/heating load through the roof. Part two deals with the interaction between the BIPV and microclimate in urban environments.The first presents the performance analysis of different PV roofs in the built environment. BIPV has significant influence on the heat transfer of building envelope because of the change of the thermal resistance by adding or replacing the building elements. The four different roofs are used to assess the impact of BIPV on the PV output and building heating and cooling loads, which are ventilated air gap PV roof, non-ventilated (closed) air gap PV roof, close roof mount PV roof and the conventional roof with no PV and no air gap. To evaluate the system performance of the different roofs, the one-dimensional transient models of four cases are derived and experimental apparatus are set up. It shows that the experimental data fit well with the estimated values according to the mathematical models. The experimental and simulation results indicate that PV roof with ventilated air gap is suitable for the application in summer because this integration leads to the low cooling load and high PV conversion efficiency. The PV roof with ventilated air gap has high time lag and small decrement factor in comparison with other three roofs. In winter, PV roof of non-ventilated air gap is more appropriate due to the combination of the low heating load through the PV roof and high PV electrical output. Then, performance optimization of the combination of PV roof with ventilated air gap in summer and non-ventilaed air gap in winter is investigated. An increase of air gap is beneficial to the PV output and the cooling load/heating load through PV roof. The PV electrical output and cooling load falls as the emissivity of roof exterior surface in the air gap increases. And the roof resistance is an important factor to influence the system performance.The second provides the analysis of the interactions of PV and urban thermal environment. On the one hand, three different models of PV power are used to investigate the effects of urban climate on the PV performance. The results show that
【Key words】 building integrated photovoltaics; cooling/heating load; urban microclimate; energy balance; mathematical model;