节点文献
FCC汽油非临氢降烯烃催化剂的制备与应用
Application and Preparation of Non-hydrogenation Reducing Olefin Catalyst in FCC Gasoline
【作者】 李丽华;
【导师】 翟玉春;
【作者基本信息】 东北大学 , 冶金物理化学, 2005, 博士
【摘要】 随着环保法规的日益严格,清洁燃料的生产已成为世界炼油工业面临的迫切任务。催化裂化是以生产汽油和柴油为主、兼顾化工原料的炼油技术,尤其在我国,80%的汽油来自催化裂化,而催化裂化汽油中烯烃的含量高达40%~60%,而国内实施了汽油新标准,要求汽油中烯烃体积分数不大于35%。因此,提高催化裂化汽油质量对我国的清洁汽油生产具有重大的现实意义。 本文分别研究了以γ-Al2O3、β-沸石和SiO2,γ-Al2O3为载体的FCC(Fluidcatalytic cracking)汽油非临氢降烯烃催化剂的制备及应用。将酸改性、载体水蒸气处理、载体氯化技术及微波合成技术引入催化剂的制备中,提高了催化剂的降烯烃性能。同时微波诱导合成的引入大大加快了催化剂的合成速度。采用日本理学D/max-RBX射线衍射仪、FR-560型红外光谱仪、Digisorb 2400物理吸附仪对催化剂的物相、酸度、比表面积、孔径和孔容进行了测定,利用荧光指示剂法和PONA色谱法对降烯烃后汽油族组成进行测定。 以γ-Al2O3为载体制备了降烯烃催化剂。通过活性组分的试验,发现利用A和B金属盐作为活性组分对烯烃降低有较理想的效果,烯烃降低二十几个百分点,并且反应条件比较缓和,反应容易控制。试验结果表明,催化剂中加入C或D酸后催化剂的活性明显提高,烯烃含量降低到35%以下,并且产品的其他性能指标都能达到要求范围:A、B双金属共浸时制得的催化剂活性高于两种金属分浸时制得的催化剂的活性,烯烃含量降到33.25%。催化剂的BET、孔容和平均孔径分别为208m2/g,0.64ml/g,9.27nm。利用催化裂化全馏分汽油,反应在自制的小型固定床反应器上进行。最佳反应条件为:反应温度100℃,反应压力0.4MPa,体积空速3.0h-1。在最佳反应条件下,FCC原料汽油烯烃由原来60.89%降到33.25%,芳烃由原来的15.04%上升到34.89%,其他性能也达到国标要求。 对以β-沸石为载体的催化剂,600℃水蒸气处理β-沸石6h、以A、B金属作为活性组分,A、B原子比为8.0、负载量为10%,浸渍时间为70℃4h时,制备降烯烃催化剂,烯烃由原来的60%下降到38.13%,并且反应条件也比较缓和,反应容易控制。催化剂中加入C酸后,催化剂的活性明显提高,烯烃含量降低到32%。水蒸气处理过程对催化剂起到增加孔径孔容的作用,水蒸气处理前后的催化剂的
【Abstract】 With the rigidly enforcing day by day of regulation of environmental protection, the production of the clean fuel has already become the urgent task that world oil refining industry has faced. The fluid catalytic cracking is in order to the oil refining device that produced mainly petrol and diesel oil, gave consideration to the industrial chemical raw materials. Especially in our country, 80% of the petrol comes from the catalytic cracking, and the content of the olefin is up to 40%-60% in the catalytic cracking petrol. The new standard of petrol has been implemented in our country, which has required that the volume fraction of olefin is not more than 35% in the petrol. Improving catalytic cracking petrol quality is of great realistic meanings to produce clean petrol in our country.In this paper, preparation and application of non-hydrogen reducing olefin catalysts have been studied separately in the FCC gasoline. These catalysts are prepared with y-Al2O3, β- zeolite and SiO2, γ- Al2O3 as carrier, respectively. Acidic modification, carrier steam treating, carrier chlorine technology and microwave synthetic technology introduce preparation of catalyst, and improved reducing olefin performance of catalyst. At the same time, synthesis velocity of catalyst is accelerated greatly under microwave irradiation. By Japan’s Neo-Confucianism D/max-RBX ray diffraction apparatus, FR-560 infrared spectroscopy, Digisorb 2400 physical absorption apparatus, phase, acidity, BET surface area, pore size and pore capacity is determined separately for catalyst. Utilize fluorescence indicator method and PONA chromatogram method to determined group content of product gasoline.A series of y- Al2O3 supported A-B bimetallic catalysts are prepared by conventional
【Key words】 FCC gasoline; catalyst; reducing olefins; microwave synthesis; acidic modification; characterization; process;