节点文献

高地震烈度区山体变形破裂机制地质分析与地质力学模拟研究

Geological Analysis and Geomechanics Analog Study of Mountain Deformation-Failure Mechanism in High Earthquake-Intensity Area

【作者】 许向宁

【导师】 王兰生;

【作者基本信息】 成都理工大学 , 地质工程, 2006, 博士

【摘要】 我国地处世界上两条最活跃的地震带之间,地震引发的地质灾害频发。笔者选择叠溪地震区作为主要实例,结合其它地震区对地震作用下山体变形破裂的发育分布规律、形成条件、演化机制、失稳判据以及各影响因素间的相关性等方面进行系统研究,得出以下主要成果和认识: 1、通过地质分析总结出区别于重力条件下山体变形破裂的典型特征和迹象,提出高地震烈度区倾外层状体斜坡滑坡型、高陡层(块)状体斜坡崩塌型和软弱基座体斜坡滑坡型三种典型性地质力学模式,并分析了其形成与演化过程。 2、提出地震作用下山体变形破裂的形成与演化是重力条件下形成演化的延续,地震力对已有变形破裂起到加剧、促进或诱发作用,其形成演化的力学机制与重力作用下类同(相似)。在浅生时效构造发育分布的高地震烈度区山体变形破裂和稳定性受其形成演化的控制。 3、研究了振动试验模型结构设计和材料配制方案以及相应的量测技术。对三种典型性地质力学模式开展了振动模型试验,结果表明: (1) 变形破裂一般出现在振动轨迹经历第一个峰值加速度和一个方向循环变化之后的第一个运动方向转变拐点。 (2) 岩质斜坡振动水平加速度达0.4g时开始出现变形破裂,接近0.8g时呈现出大范围整体失稳破坏。孔隙水压力激增启动的临界水平加速度为大于0.2g,接近0.4g时坡体滑动失稳。振幅越大,反复振动次数越多,振动加速度越大,持续时间越长,破坏程度越严重。 (3) 变形破裂与初动方向密切相关。振动初动方向一侧变形破裂迹象和程度明显强烈于对侧。 (4) 倾外层状体斜坡一般以滑移拉裂和滑移弯曲方式变形破裂,滑坡方式失稳;高陡水平向块(层)状体斜坡一般以滑移-压致拉裂方式变形破裂,崩塌方式失稳;高陡倾外和倾内块(层)状体斜坡一般以弯曲(倾倒)—拉裂方式变形破裂,崩塌方式失稳;软弱基座体斜坡一般以塑流—拉裂式滑坡失稳。 (5) 振动动反应幅值有明显的垂直放大和水平放大现象。高陡块(层)状体斜坡晃动板梁的支点位置一般出现在距坡脚坡高的1/3~1/2处,破裂失稳(崩塌)高度一般出现在距坡脚坡高的1/2~2/3范围。 4、结合地质分析和地质力学模拟试验,研究了地震与山体变形破裂各影响因素间的相关性,讨论了三种典型地质力学模式的失稳判据。

【Abstract】 Our country lies in a region between two most active earthquake belts in the world, where geological disasters resulted from the earthquake occur frequently. The author selects Diexi earthquake area as main examples and makes comparative analysis for geology of mountain deformation-failure in other earthquake areas affected by the earthquake, and conducts the study on geomechanics model vibration test. As a result, the main achievements and recognitions are concluded as follows:1. Summarize typical characteristics and evidences of mountain deformation-failure under other conditions dinstingushed from gravity force, put forward three kinds of typical geomechanics models including consequent rock slope destabilization type, high-steep rock weathering and unloading belt’s landslip type and weak base pore water pressure proliferation and destabilization type, and analyze its formation and evolution course.2. Propose that the formation and evolution of mountain deformation-failure affected by the earthquake is the continuation of the evolution formed under gravity force, and the earthquake force plays an important role in sharpening, promoting or inducing the existing deformation-failure further. In addition, the mountain deformation-failure and its stability in high earthquake intensity region formed and distributed by epigenetic time-dependent structure will be controlled by its formation and evolution.3. Study the structural design of vibration test model and material fabricating scheme as well as related measurement technique; and conduct vibration model test for three typical geomechanics models. Consequently, the result is shown as follows:(1) The deformation-failure generally appears at transitional inflection point of the first movement direction after the first peak value acceleration and one direction cycle change of vibration track.(2) When rock slope vibration acceleration is up to 0.4g, the mountain massif commences with deformation-failure; when near to 0.8g, the mountain massif appears with large-area intensive deformation-failure. But the slope sliding is destabilized when critical acceleration near to 0.4g. Generally, greater vibration amplitude, more times of repeated vibration, longer vibration acceleration, longer duration time, more

  • 【分类号】P55
  • 【被引频次】44
  • 【下载频次】910
节点文献中: