节点文献

硅基高κ材料的分子束外延生长

【作者】 徐闰

【导师】 蒋最敏;

【作者基本信息】 复旦大学 , 凝聚态物理, 2005, 博士

【摘要】 在过去二十多年里,Si基元器件的大小遵循Moore定律按比例的持续减小。对于下一代金属氧化物半导体场效应管(MOSFET)器件,原来的栅极介电材料SiO2已经不再适合使用。人们需要寻找适合的高k(k指介电常数)材料作为MOSFET器件中新的栅极材料。这其中,有两类材料最受关注。其中之一是IVB族金属氧化物,包括HfO2和ZrO2;另一类是ⅢA和ⅢB族氧化物,包括Al2O3和Y2O3,CeO2等其他一些稀土金属氧化物。在这篇论文里,我们主要研究高k氧化物HfO2和Er2O3的生长及其特性。 第一、二章将分别介绍研究背景和实验仪器。 在第三章中,我们将研究HfO2的生长及其基本的物理和化学性质。HfO2薄膜由电子束蒸发法获得。X射线光电子能谱(XPS)研究证明薄膜是符合化学剂量比的。透射电子显微镜(TEM)结果显示薄膜呈多晶状。原子力显微镜(AFM)结果表明薄膜表面非常平整,无空洞。对12nm厚的HfO2而言,其均方根粗糙度为0.16nm。由电学方法得出薄膜总的介电常数为18。 第四章主要研究了以下四个方面。第一,Si基HfO2薄膜的热稳定性。对在900℃和一个大气压的N2气氛下快速退火30s的HfO2薄膜,扫描电子显微镜(SEM)和AFM结果发现薄膜表面依然很平整,无空洞。这表明在这种条件下薄膜未发生分解反应,其热稳定性良好。但是,同步辐射光电子能谱研究表明在超高真空条件下HfO2薄膜在温度为750℃时开始分解。第二,HfO2薄膜与Si的能带偏差。基于光电子能谱的方法用于研究HfO2薄膜与Si的价带偏差,其值约为3.46eV。第三,HfO2薄膜的禁带宽度。从01s的能量损失谱上可获得HfO2的禁带宽度值约为5.0ev。第四,我们采用在位的光电子能谱方法研究HfO2薄膜的初期生长。实验观察到,即使对非常薄的HfO2薄膜,界面处存在富Si的硅酸盐(silicate)层。这层界面层的形成与Hf可能促进氧化的作用有关。 第五章中主要论述Er2O3薄膜在Si(001)和Si(111)上的外延生长,也包括Si衬底表面的薄SiO2层对Er2O2外延生长的影响。Er2O3薄膜和Si的外延关系由XRD和RHEED来确定。在Si(001)衬底上,其外延关系为Er2O3(110)//Si(001),Er2O3[001]//Si[110]或Er2O3[110]//Si[110]。在Si(111)衬底上,其外延关系为Er2O3(111)//Si(111)。在较低的生长气压或/和较低的生长温度下,Er的硅

【Abstract】 For continued technology scaling, high k materials are required to replace SiO2 as gate dielectric in the next generation metal oxide field effect transistors (MOSFET). Two kinds of materials are most promising. One is Group IVB metal oxides such as HfO2 and ZrO2; the other is Group IIIA and Group IIIB metal oxides including Al2O3, Y2O3 and some other rare earth oxides. In this thesis, we have studied the growth and characterization of high k materials HfO2 and Er2O3.Here, the first two chapters introduce the research background and experimental equipments.In Chapter 3, the MBE growth and characterization of HfO2 films are discussed. HfO2 films were grown by electron beam evaporation using a metallic Hf source. Firstly, the basic physical and chemical properties of the as-grown films were characterized by using the corresponding methods. The as-deposited films are stoichiometric and polycrystalline, as verified by X-ray spectroscopy (XPS) and transmission electron microscopy (TEM) results, respectively. Atomic force microscopy (AFM) images show an extremely smooth surface obtained, with a root-mean-square (rms) roughness of about 0.16 nm for a 12 nm thick HfO2 film. The films exhibit the overall dielectric constant of 18.Chapter 4 includes the following four sections. Firstly, the thermal stability of HfO2 films on Si substrates. For the HfO2 films upon rapid temperature annealing (RTA) at 900℃ in 1 atm N2 for 30 s, both scan electron microscopy (SEM) and AFM results show a flat surface, and no voids or pits are found, indicating a good thermal stability of HfO2 films upon annealing in the N2 ambient. However, HfO2 films begin to decompose at about 750℃ under the ultrahigh vacuum (UHV) condition, as verified by synchrotron radiation photoemission spectroscopy (SRPES) results. Secondly, band offset of HfO2 films on Si(001). The photoemission based method proposed by Kraut et al. is used to determine the band offset of HfO2 with Si. Accordingly, the valence band offset of HfO2 with Si is 3.46 eV. Thirdly, the band gap of HfO2. By using the O 1s energy loss spectrum, the band gap of HfO2 films is roughly measured to be about 5.0 eV. The relatively small value obtained mainly arises from the lower energy resolution due to the non-monochromatic Mg ka x-ray used. The last section concerns in situ photoemission study on initial growth of HfO2 films on Si(001) is also included in Chapter 4. Interfacial layers between HfO2 and the Si substrate are observed even for very thin HfO2 films and confirmed to be Si-rich

  • 【网络出版投稿人】 复旦大学
  • 【网络出版年期】2005年 07期
  • 【分类号】TN304.054
  • 【下载频次】281
节点文献中: