节点文献

气悬浮立式转子动平衡技术研究

Research on Air-suspending Dynamic Balancing Technology for Vertical Rotor

【作者】 陶继忠

【导师】 殷国富;

【作者基本信息】 四川大学 , 机械制造及其自动化, 2004, 博士

【摘要】 中国工程物理研究院在进行某空间装置质量特性综合测量设备的研制中,对该空间装置在低转速下的立式动平衡测量精度提出了很高要求。由于安全的原因,测量时空间装置的转速不能太高,而低转速下高精度的立式转子动平衡技术仍是一个有待深入研究的难题。因此,本论文在中国工程物理研究院科学技术基金的资助下,专题探索低转速下新的立式动平衡测量原理、测控装置的研制技术与方法。 通过分析各种动平衡测量原理和方法、关键技术与研究趋势,针对低转速下测量信号强度变弱的问题,本文提出一种新型的立式动平衡测量原理——气悬浮立式转子动平衡测量原理,并研制开发出相应的测控装置,重点对动不平衡量分离算法模型、动平衡测量装置的设计方法、系统结构、转子悬浮稳定性控制和测控数据处理等关键技术进行深入研究。本文在原理和工程应用中的主要研究成果和特色如下: (1)根据立式动平衡测量要求和气体静压支承特点,提出了气悬浮立式转子动平衡测量方法。其技术原理是转子被气体静压球面轴承稳定悬浮并由均匀水平分布的气流驱动而匀速转动,转子的动不平衡量将导致转子偏离水平位置,通过测量转子的偏移量即可计算转子的动不平衡量。 (2)提出一种气悬浮动平衡测量时在两个校正面上的不平衡分量与转子静、偶不平衡量之间关系的双面分离算法,建立了静、偶不平衡量与转子倾斜偏移量之间的线性关系方程。通过理论计算与实验分析得出线性参数后,即可根据转子偏移量直接计算出转子的静、偶不平衡量,无需进行校验转子标定。转子静、偶不平衡量在静止和转动时分别测量与校正,实现了静、偶不平衡量的直接分离,避免了两者之间的干扰。 (3)根据气悬浮动平衡测量的基本原理和工程需求,研究了用于动平衡测量的支承、驱动、气压分布测量、精密恒压供气、传感器标定等实验装置和机构的相应设计技术。重点设计了结构独特的双环缝球面节流器,并采用有限元分析技术对球面节流器在不同压力差时的变形情况进行了数值模拟。采用气涡流驱动方式,使转子转速更加恒定。设计的二自由度球面测头能测量球面节流器内部任意点的压力,进而得到摘要气体静压球面轴承间隙内的压力分布。 (4)气体静压球面轴承是整个实验装置的核心,其设计过程是一个多参数、多约束的复杂优化问题。本文将遗传算法用于球面半径、支承角度、供气压力等主要结构参数的优化,在此基础上进行了气体静压球面轴承的详细设计。实验结果验证了其优化设计方法正确,效果好。 (5)分析了供气压力波动幅值与频率对转子空间姿态的影响。讨论了转子自激振动成因,根据劳斯一霍尔维茨稳定性判据,提出了防止悬浮转子自激振动的解决方法以指导球面节流器的结构设计。建立了以计算机为调节器的自适应P田控制系统,实现了气体压力的直接数字闭环控制。 (6)针对低转速下弱信号降噪问题,采用剔除脉冲干扰和二次磨光法进行数据预处理,并将遗传算法应用于信号处理,进行了有限冲激响应数字滤波和多频率信号的信号参数识别的应用研究。为提高传感器的精度,采用多传感器数据融合技术标定位移传感器,建立了传感器指标与影响因素间的联系。 (7)在以上原理和实验装置研究的基础上,采用统一建模语言和虚拟仪器开发工具,建立了气悬浮动平衡测量和气压分布测量软件系统。采取了噪声屏蔽、软件检错等必要的抗干扰措施,提高了测试系统的精度。所研制的实验装置和软件系统除了能够完成动平衡实验,还可以进行转子悬浮稳定性、测量装置工程应用等实验。通过多次实验结果的分析,表明所建立的测控系统,具有适应性强、使用灵活方便、复用性好的特点。关键词:空间装里的质量特性动平衡技术气悬浮立式转子气体静压球面轴承 动平衡测量装盖双面分离算法自适应pID控制多传感器数据融合技术

【Abstract】 During the developing quality characteristics colligation measuring equipment for the flight equipment in Chinese Academy of Engineering Physics (CAEP), high requirements are put forward to vertical dynamic balancing measuring accuracy of the flight equipment at low rotation speed. The rotation speed must be low for the sake of safety. So far, it is still a difficult problem for accurate dynamic unbalance measuring at low rotation speed over the world. In order to solve the question in this paper, a new dynamic balancing measuring principle for vertical rotor, designing technology and a new measuring and controlling device at low rotation speed are researched and developed by supporting of the Science & Technology Foundation of CAEP.Based on the analysis of measuring principles and methods, key technologies and research tendency of vertical rotor dynamic balancing, a new measuring principle model of air-suspending vertical rotor dynamic balancing is researched and a set of experiment devices used to solve the problem of weak signal processing at low rotation speed are developed. Some key techniques are discussed, such as dynamic unbalance separation algorithm model, designing method of air-suspending dynamic balancing measuring system for vertical rotor, system frame, rotor suspending stability controlling, data transaction, etc. The main achievements and creative ideas of the paper in principle and engineering application are as follows:(1) According to vertical dynamic balancing measuring demand and characteristic of air static pressure suspending, the theoretic model for air-suspending dynamic balancing of vertical rotor is established. The rotor is suspended by an air static pressure ball bearing and drove by well-distributed air flow. Dynamic unbalance makes the rotor slant, anddynamic unbalance of the rotor can be calculated by measuring its slant displacement.(2) Algorithm of calculating dynamic unbalance on two correction planes for the new measuring principle is presented, and static unbalance and couple unbalance are separated on two correction planes. The lineal relationship function between dynamic unbalance and slant displacement is established. After the lineal parameters are determined through theoretic calculation and experiment analysis, dynamic unbalance can be calculated, so verification rotor is unnecessary. Static unbalance and couple unbalance can be measured at different status, and they are separated directly, so interference can be avoided.(3) Based on air suspending dynamic balancing principle, a set of experiment devices for vertical rotor are designed, such as supporting device, driving device, measuring device for air pressure, exactitude air pressure controlling device, displacement sensor demarcation device, etc. Designing of dual-ring slot spherical throttle is keystone. FEA software is applied to calculate spherical throttle distortion under different air pressure, which can instruct to design spherical throttle. The rotor can rotate at constant speed because it is drove by non-contact well-distributed air flow. Pressure at any point in the throttle is measured by two-dimension spherical sensor, and pressure distribution can be determined.(4) The air static pressure ball-bearing is core of the experiment devices, and its designing is a complex process with multi-parameters and multi-restrictions. Genetic algorithm is applied to optimize its structural parameters, such as spherical radius, bearing angle, air feed pressure, etc. Based on these parameters, air static press ball bearing is designed in detail. Experiment results have verified that the new optimization designing method is correct and measuring effect is satisfactory.(5) Influence of supporting air pressure variation to space attitude of the rotor is analyzed. The stability controlling techniques for vertical rotor are studied. Reasons of self oscillation are analyzed, and solutions are put forward to instruct throttle structural designing according to Laus-Holweitz stability regulation. Adaptive PID contro

  • 【网络出版投稿人】 四川大学
  • 【网络出版年期】2005年 02期
节点文献中: