节点文献

高模量树脂基体及高抗压复合材料的研究

Research on High Module Polymer Matrix and High Resistance to Compression Composites

【作者】 郑亚萍

【导师】 乔生儒;

【作者基本信息】 西北工业大学 , 材料学, 2001, 博士

【摘要】 树脂基复合材料已在主承力构件中得到了应用,结构材料更多的是承受压缩和弯曲载荷,在实际中对抗压复合材料提出了越来越高的要求,研究和解决树脂基复合材料压缩强度和弯曲强度偏低的问题,更能有效地发挥树脂基复合材料的优越性能。提高树脂基复合材料压缩性能的关键问题是提高树脂基体的模量。 根据国外学者利用反增塑法提高树脂基体的模量,发现模量的提高与自由体积之间有着密切的关系,首次提出了采用高密度树脂制备高模量基体的新方法。选择高密度的环氧树脂TDE-85作为基体的主要组分,分别以间苯二胺(MPD),改性间苯二甲胺(A-50),4.4′-二基氨基二苯基甲烷(DDM),4.4′-二氨基二苯基砜(DDS),2-甲基4-乙基咪唑(2.4-MI),双氰胺(DICY)为固化剂,研制出了三种高模量高强度的树脂基体,其拉伸模量大于5.0GPa,压缩模量大于6.0GPa,拉伸强度大于80MPa。一般环氧树脂基体的压缩模量通常为4.21GPa左右,本文研究结果高于国外利用反增塑法制备的压缩模量为4.6GPa的树脂基体,完全满足了高抗压复合材料(例如深潜壳体用材)对树脂基体的性能要求。 通过力学性能及DTA分析,系统研究了TDE-85/胺体系的最佳配比、固化工艺及动力学参数,为高模量树脂基体的实际应用提供了理论依据。研究了浇铸体密度、线膨胀系数、玻璃化温度与模量的关系,探讨了模量大幅度提高的机理。研究表明,体系的化学键密度是支配模量高低的主要因素,随着密度增大,基体模量与玻璃化温度升高,线膨胀系数降低。 研究了基体模量对玻璃纤维增强复合材料单向板各项性能的影响。结果表明,随着基体模量的提高,复合材料的拉伸性能、压缩性能、弯曲性能、剪切性能显著提高。玻璃纤维复合材料的压缩强度达1337.5MPa,与T300/环氧树脂复合材料的压缩强度(1378MPa)接近:弯曲强度达2324.6MPa,远高于T800/环氧树脂复合材料及各种高性能复合材料的弯曲强度。利用SEM对复合材料的压缩、剪切断口进行了观察,发现高模量树脂基复合材料承受压缩载荷时,出现纤维压断;承受剪切载荷时,分层不明显。 利用纳米材料SiO2、TiO2、α-Al2O3改性双酚A型环氧树脂。采用表面处理与超声波、均质高速分散机结合,解决了纳米粒子均匀分散的技术难题,摘要使纳米粒于较均匀地分散于树脂基体中。本文采用的三种纳米粒子均使环氧树脂的模量与玻璃化温度提高,在低含量范围内,拉伸模量的变化规律,符合Einstein公式;当含量较高时,纳米粒子与基体的热膨胀系数不同而产生少量内应力,未分散的团聚体中存在少量气泡,使模量降低。 以纳米m、高强玻璃纤维共同增强环氧树脂,制备纳米纤维环氧树脂复合材料。发现纳米粒子的加入,使纤维复合材料的各项性能得以提高,尤其是弯曲强度,而对复合材料的工艺性没有影响。这一研究在国内尚未见报道。 利用正电子淹没技术测试了自由体积,首次用实验验证了模量与自由体积的密切关系。对于tilE.85/胺体系,在环氧基/胺摩尔比相同的条件下,固化剂交联点距离增大,堆砌密度降低,浇铸体密度降低,自由体积的尺寸与浓度增大,浇铸体的模量与玻璃化温度降低。对于TDE{5/A50体系,完全反应时,分子堆砌密度最大,自由体积的尺寸与浓度最低,模量最高:体系中有未反应的单体时,自由体积尺寸与浓度增大,模量降低;对于环氧树脂CYD.128,采用不同的固化剂,在配比不同的条件下,自由体积浓度降低,模量升高。纳米粒子的加入,使自由体积尺寸增大,自由体积浓度降低,模量与玻璃化温度升高。

【Abstract】 Polymer composite has been used in structure. The structural composites endure compression and bending load. In practice, more and more desiral perfomance is put forward. In order to exert the high perfomance for composite, we must study and resolve the technology for the low compression and bending properties. The key technology is to enhance the modulus of matrix. The increase in the modulus of matrix can be realized by using antiplastics agents, if we found that there were connections between modulus and free volume. The new methods which can prepare the high modulus matrix with high density resin are reported domestically for the first time. A special epoxy resin called TDE-85 which has high density corresponding to some curing agents, such as MPD, A-SO, DDM, DDS, 2.4-MI, DICY can enhance the module of crosslinked epoxy matrix. Its Youngs module is up to 5.0 GPa. The compression module is more than 6.OGPa. The compression module of normal resin is about 4.2 1GPa. It can be used to composites with higher compression strength. By measuring the mechanical and thermal properties , the best ratio of epoxy/ amine, the technique processes as well as the kinetics of reaction are studied. The theoretical basis is to provide practical application of high module matrix. The connections of density, liner expanding coefficient and module are studied. The results indicated that module is controlled by chemical band, and the modules Tg increases , and liner expanding coefficient decreases with the density decrease. The influence of matrix module on the properties of composite is studied. As a result, the physical properties of tensile,compression, bending and cuting enhance with the increase of matrix module . The compress strength of glass fibre composite is 1337.5MIPa, which is closed to T300/epoxy composite. The bending strength is 2324.6MPa, which is bigger than that of T800/epoxy composite and other high performance composites. The breaking section of compression and cuting are observed. When composites with high module matrix endure compress loading, the fibres are broken off. When it endures cuting load, the matrix delamination is not distinctive.Nanometer SiO, TiQ and Q -Al2O3 are used to increase phySical properties ofBPA ePOxy resin. Suffoce treatment, ultrasonic and high sPeed dispersion machineare used to dispose the nanometer in resin matrix. As a result, three kinds ofnanometer materials show to increase the module and Ts of matrix. When thecontent of nanometer is small, the variations of Youngs module is accord withEinstein fOrmula. When the content of nanometer is large, the different linerexpanding coefficient betWeen nanometer and matrix can cause a inner stress,increasing air bubbles which exist in rewhted nanomCter, these two points candecrease module.Nano-fibre-comPOsite is Prepared with SiQ, S-GF and epoxy resin. Theperformance are increased with nanometer. Nanometer brings no influence onprepimion tecndcs. All of this is not rePOrted domestically.The data of free volume are tested by Positron technique. The connectionbetween module and free volume data is first tested by exPeriment. When the moleratio of TDE-85/arnine systems is the same, the far the distance of curing agent is,the smaller the heap density is, when the cast density decreases, the free volumedata increases, as a result, the cast module and Ts decrease. When TDE-85/A-50system reacts completely, the molecule heaP density is the biggest, the free volumebecomes the smallest,and the moduIe will be the biggest. When there is unratedmonomer, the free volume increases and the module decreases. For CYD-l28ePOxy resin, when the curing agen

节点文献中: