节点文献

富氮金属—有机骨架的合成与功能性研究

The Preparation and Functionality Study of N-rich Metal-organic Framework

【作者】 秦俊生

【导师】 苏忠民;

【作者基本信息】 吉林大学 , 物理化学, 2014, 博士

【摘要】 金属-有机框架(1netal-organic framework, MOF)材料将无机组分和有机组分巧妙的结合,与其他多孔材料相比有着其得天独厚的优势,受到科学家们广泛关注。随着MOF领域研究的发展,化学工作者合成了大量具有新颖结构、超大比表面积的多孔材料。这使得靶向合成特定结构与性质的MOF材料成为可能,同时以应用为目标的功能化调控成为现今的研究热点。目前,科研工作者们通过设计合成在一定程度上可控MOF材料的框架结构,同时将光、电、磁等性质引入到MOF材料中,成功得到许多性能优良的MOF功能材料。然而,MOF领域中的重要问题仍需进一步研究探讨,如MOF材料最可能实现应用的分离领域、如何设计合成具有较高二氧化碳捕捉能力的MOF功能材料等等。实际应用中,MOF材料的稳定性至关重要,开发稳定性较好的MOF材料也非常值得探讨。目前,富氮活性炭材料、氨基功能化的介孔硅材料、聚乙烯亚胺材料及含氮纤维素材料等被用于工业中二氧化碳的捕捉,而其共性的一面是富含氮元素,这预示氮元素在二氧化碳捕捉方面有着独特的作用。MOF材料在提高二氧化碳捕捉方面主要是靠框架中开放金属位点、以及配体官能化等,连接体中芳香氮原子对二氧化碳的作用则存在研究的空白。签于此,本论文选取富电子的含能氮杂环配体构筑多孔材料,富氮配体丰富的配位方式和独特的富电子结构将得到特殊电子分布以及特殊结构的功能多孔材料。1.在溶剂热条件下,利用一个不含氨基基团的富氮芳香配体H3dttz(H3dttz=4,5-di(1H-tetrazol-5-yl)-2H-1,2,3-triazole)作为连接体来构筑具有大量N空位点的金属-有机框架材料来提高COz的吸附量。设计思想:ⅰ)它包含三氮唑和四氮唑基团,在构筑沸石型结构时可能采取类似咪唑的配位模式;ⅱ)它是刚性芳香配体,有利于获得具有永久性孔道的材料;ⅲ)它含有大量来自芳环的N原子,提供了评价来自富氮芳环的未配位N原子对于CO2吸附量影响的机会(在这个配体中,N原子相对于总原子数的比值为73.3%)。我们成功构筑了一个具有方纳石(sodalite)拓扑的新颖的类沸石型金属-有机框架材料。[Zn(Hdttz)]-DMA (IFMC-1)IFMC-1展示了高的CO2吸附和选择性的C02/N2吸附能力。我们首次研究了ZMOFs中来自芳环的大量未配位N原子对于CO:吸附的影响。结果表明,高含量的开放N位点能够提高CO:的吸附能力,即使是在不存在氨基基团和开放金属位点的情况下。我们通过GCMC模拟,在理论上探究了孔道中二氧化碳的吸附位点,结果也证明了开放N位点对二氧化碳分子有强的吸附作用。此外,我们研究了IFMC-1的药物传输能力。2.我们采用溶剂热合成方法,获得了一个具有pcu拓扑的阴离子骨架材料。[(CH3)2NH2]4[(Zn4dttz6)Zn3]·15DMF·4.5H2O (IFMC-2)在IFMC-2中存在一个新型的二级构筑单元,四核金属簇{Zn4dttz6}。该金属簇通过Zn(Ⅱ)离子相连,形成了一个3D的微孔阴离子骨架。通过离子交换实验,我们获得了负载Ln3+离子的MOF材料,Ln3+@IFMC-2(Ln3+=Sm3+,Eu3+,Tb3+或Dy3+),并研究了Ln3+@IFMC-2的荧光发射光谱。结果表明,IFMC-2可以作为一个潜在的荧光探针来检测不同的Ln3+离子。此外,我们研究了IFMC-2对于离子型染料的吸收能力。IFMC-2可以吸收阳离子型染料,不能吸收中性和阴离子型染料。这个结果表明,IFMC-2对阳离子型染料展示了选择性的吸收行为。在NaCl存在的情况下,阳离子染料可以缓慢的释放。3.我们采用溶剂热方法合成了一个具有六角形孔道的阴离子骨架材料。[Zn2(mtz)3(HPO3)2/3]·(H3O)1/3·H2O (IFMC-3)这里,Hmtz是5-methyl-1H-tetrazole的简写。IFMC-3不仅在空气中可以稳定存在,室温时在酸碱水溶液中也可以稳定存在。我们研究了负载Ln3+离子的IFMC-3荧光光谱。随后,我们对IFMC-3在不同有机溶剂中的荧光性质也进行了研究。此外,由于IFMC-3在硝基苯中表现出了荧光猝灭现象,可将其作为检测硝基苯的探针。4.在溶剂热条件下,以锌离子、三氮唑和噻吩二酸(及苯二酸及其衍生物)为原料,通过调控多元体系合成了一系列新颖的多孔金属-有机骨架材料。[Zn5(tz)6(DMF)4(tpdc)2](1)[NH2(CH3)2][Zn4(tz)3(tpdc)1.5](tpdc)1.5·2.5DMF (2)[NH2(CH3)2][Zn4(tz)3(tpdc)1.5](tpdc)1.5·DMA (3)[NH2(CH3)2][Zn4(tz)3(tpdc)1.5](BDC)1.5·2DMF (4)[NH2(CH3)2][Zn4(tz)3(tpdc)1.5](NH2BDC)1.5·2DMF (5)[NH2(CH3)2]2[Zn8(tz)6(tpdc)3](PhBDC)3·6DMF (6)通过气体吸附证明了材料中孔道的稳定性。此外,我们研究了化合物4和6对离子型染料的吸收与分离行为。

【Abstract】 Metal-organic framework (MOF) materials that integrate the inorganiccomponent and the organic component, possessing unique advantage compared withother porous materials, are catching increasing attention of chemists worldwide. Withthe development of MOF science, a large number of porous mateirals with novelstructure and high specific surface area were synthesized. The previous works make itpossible to isolate target MOF materials with specific structure anddesired properties.Meanwhile, it becomesa hot topic tofine-tune function of MOF materials forapplication. Recently, researchers have designed and synthesized controllableframework of MOF materialsin a certain extent, and then introduced the luminescence,electricity, magnetism to the MOF materials. As a result, numerous MOF materialswith excellent performance have been successfully prepared. However, it needsfurther research to explore important issues in MOF area, such as the explorationofthe area that most likely to achieve separation with the MOF material; how to designand synthesis of MOF materials with high carbon dioxide capture ability.From theapplication point ofview, the stability of MOF materials is essential. In this context, itis an issue worthy of study indeveloping MOF materials with high stability.Currently, nitrogen-rich activated carbon, amino-functionalized mesoporoussilica materials, polyethyleneimine materials and nitrogen-containing cellulosematerials are widely used in industry to capture carbon dioxide.And the commonfeatureof them is the high content of nitrogen, which indicates that nitrogen plays aunique role in terms of carbon dioxide capture.In recent years, the way to improve theCO2capture of MOF materials is focused on open metal sites, functionalized ligandsand so on. So far, it is still a gap to explore the effect of nitrogen atom from aromaticlinkers on the capture of CO2.Based on the above consideration, thisthesisconcentrates on the selection ofelectron-richnitrogen-containingaromaticheterocyclic ligands to construct porous materials. The porous MOF materials withspecial structue and function will be expected based on the diverse coordinationfasion and unique electron-rich geometryof N-rich ligands. 1. We designed and synthesized a N-rich aromatic ligand H3dttz(H3dttz=4,5-di(1H-tetrazol-5-yl)-2H-1,2,3-triazole)without a NH2group as the bridging linkerforthe fabrication of new zeolite-like framework under solvothermal condition forhigh CO2uptake, because i) it contains triazolate and tetrazolate groups,and canperform a similar coordination mode as imidazolate togenerate zeolite structures; ii) itis a rigid aromatic molecule andgood for the preparation of permanent porousmaterials; and iii)it contains a large number of N atoms from aromatic rings andoffersan opportunity to evaluate the influence of uncoordinatednitrogen atoms from N-richaromatic rings on CO2adsorbantamount (the percentage of N atoms is73.3%for allatoms in thisligand).A novel zeolite-like metal-organic framework (ZMOF) withsodalite topology, was successfully synthesized and stucturally characterized.[Zn(Hdttz)]·DMA (IFMC-1)IFMC-1exhibits high CO2uptake and selective CO2/N2adsorption capacity. Forthe first time, weinvestigated the influence of a large number of uncoordinatednitrogen atoms from aromatic rings forCO2adsorption in ZMOFs. This result revealsthat the high percentage of open N-donor sites leads tothe high uptake capacity forCO2, even in the absence of any NH2groups and open metal sites.The binding sites ofCO2weresimulated with grand canonical Monte Carlo (GCMC), indicating that thereisstronger binding interaction between the uncoordinated nitrogen sites fromtetrazolate ring and CO2molecule. Inaddition, it also exhibits efficient drug deliverycapacity2. A novel anionic framework with pcu topologywas solvothermally isolated.[(CH3)2NH2]4[(Zn4dttz6)Zn3]·15DMF·4.5H2O (IFMC-2)A new example of tetranuclear zinc cluster,{Zn4dttz6}, was served as asecondary building unit in IFMC-2. Furthermore, the metal cluster was connected byZn(II) ions to give rise to a3D open microporous structure. The lanthanide(III)-loadedMOF materials, Ln3+@IFMC-2, were successfully prepared via ion exchangeexperiments owing to the anionic framework of IFMC-2. Moreover, the emissionspectra of as-prepared Ln3+@IFMC-2were investigated, and the resultssuggestedthat IFMC-2could be utilized as a potential luminescent probe toward different Ln3+ions. Additionally, the absorption ability of IFMC-2toward ionic dyes was alsoperformed. The cationic dyes can be absorbed, but not neutral and anionic dyes,indicating IFMC-2exhibits selective absorption toward cationic dyes. Furthermore,the cationic dyes can be gradually released in the presence of NaCl. 3. A hexagonal channel-based porous anionic metal–organic frameworkwassuccessfully constructed and structurally characterized.[Zn2(mtz)3(HPO3)2/3]·(H3O)1/3·H2O (IFMC-3)where, Hmtz=5-methyl-1H-tetrazole.IFMC-3isstable in air and acidic/basic aqueous solutions at room temperature.Inaddition, the luminescence of Ln3+-loaded IFMC-3was investigated, as well as theluminescence behaviours towards a series of organic solvents. Furthermore, IFMC-3was employed as the sensor for the detection of nitrobenzene through fluorescencequenching.4. A series of novel porous MOF materials have been solvothermally isolated byemploying Zn2+ions,1H-1,2,3-triazole (Htz), thiophene-2,5-dicarboxylic acid(H2tpdc), and H2BDC (or NH2H2BDC, PhH2BDC) as precursors through adjustingmultiple systemand structurally characterized.[Zn5(tz)6(DMF)4(tpdc)2](1)[NH2(CH3)2][Zn4(tz)3(tpdc)1.5](tpdc)1.5·2.5DMF (2)[NH2(CH3)2][Zn4(tz)3(tpdc)1.5](tpdc)1.5·DMA (3)[NH2(CH3)2][Zn4(tz)3(tpdc)1.5](BDC)1.5·2DMF (4)[NH2(CH3)2][Zn4(tz)3(tpdc)1.5](NH2BDC)1.5·2DMF (5)[NH2(CH3)2]2[Zn8(tz)6(tpdc)3](PhBDC)3·6DMF (6)The porous stability of these materials were confirmed by gas adsorption. Inaddition, the absorption and separation ability of4and6toward ionic dyes were alsoinvestigated.

  • 【网络出版投稿人】 吉林大学
  • 【网络出版年期】2014年 09期
节点文献中: