节点文献

中国服务业的全要素生产率研究

Research on Total Factor Productivity of China’s Service Industry

【作者】 纪明辉

【导师】 金成晓;

【作者基本信息】 吉林大学 , 数量经济学, 2013, 博士

【副题名】地区差异、收敛性与影响因素

【摘要】 20世纪80年代开始,世界经济开始向服务经济转型,目前,全球已经进入服务经济时代,服务业增加值占全球总产值比重达到70%,服务业还成为引领全球技术创新和商业模式创新的主导力量。我国服务业在国家及各地方一系列发展政策扶持下,发展态势总体良好。但与发达国家及全球相比,我国服务业增加值比重长期徘徊于40%,甚至都不及欠发达国家水平,而且我国服务业发展的地区不平衡现象日渐凸显,已经成为困扰我国区域均衡发展的难题。根据经济增长理论,要素积累和生产率提高是产出增长的两个主要源泉,受资源条件限制,要素积累不能带来持续的产出增长,只有提高生产率,才能产生经济增长的不竭动力。那么从全要素生产率视角考察我国服务业发展及地区差异的状况就成为本文的目的。文章以经济增长理论、服务业理论、生产率理论为基础,结合统计学、计量经济学等方法进行实证研究。文章考察了我国服务业发展水平及全要素生产率的地区差异状况,揭示了全要素生产率对服务业增长及地区差异的影响与贡献,分析了服务业全要素生产率的影响因素。从实践方面看,这些分析为推进服务业发展方式的转变,促进服务业地区协调发展将提供有益参考。全文共有7章,主要内容如下:第一章,研究背景介绍与相关文献综述。本章首先对世界服务业发展趋势和我国服务业发展特点进行了介绍;梳理并评述了国内外相关研究。第二章,理论与方法介绍及数据处理。本章首先介绍了服务业发展的理论,概述了服务经济理论发展脉络;然后介绍了在实证研究中使用较为广泛的全要素生产率的测度方法,包括索洛余值法、随机前沿生产函数法和数据包络分析法,并比较了三者的优缺点;最后对后文所使用的样本及数据的来源与处理方法进行了说明,尤其是详细交代了各省区服务业资本存量的处理过程。第三章,中国服务业产出的省际差异概况分析。本章以服务业劳均产出为对象,考察1993-2010年中国服务业产出的地区差异状况和长期发展趋势。对地区差距的度量方法采用了最大最小值比、变异系数、相对发展率指标和Theil指数。各测量结果都显示出中国服务业地区发展差距有逐渐增大的趋势。第四章,中国服务业全要素生产率增长及构成的测算。本章的主要工作是测度了中国服务业的技术效率以及全要素生产率的增长与构成,采用的方法是将SBM超效率模型与Malmquist生产率指数相结合。研究发现:1993-2010年,中国服务业全要素生产率的年均增长率为0.83%,技术进步水平的平均增长率为2.4%,技术效率平均增长率-1.5%,技术进步是服务业全要素生产率增长的动力。第五章,全要素生产率水平与服务业产出省际差距的关系研究。本章利用索洛余值方法对中国各省区服务业全要素生产率水平进行了测算,在此基础上,运用核密度分布图比较全要素生产率水平与服务业产出的分布状态,同时还利用方差分解方法考察和分析各省区服务业的全要素生产率水平、要素投入对服务业产出的省际差距的影响。研究结果表明,全要素生产率水平对服务业产出差距的贡献逐渐上升,可以预见的是全要素生产率水平对服务业发展的地区差距影响将越来越大,并成为主要因素。第六章,全要素生产率的收敛性及对服务业产出省际差距的影响。本章对经济收敛和生产率收敛的相关文献进行介绍后,对中国各省区服务业全要素生产率水平和劳均产出的收敛状况分别进行了检验。文章还引入一个非参数的分解框架把服务业劳均产出进行四重分解,进一步利用Maudos模型将服务业劳均产出、全要素生产率增长以及各种投入要素纳入统一框架,研究服务业全要素生产率的收敛或发散是多大程度上导致了中国各省区服务业产出增长的差异及变化。研究发现,中国服务业的全要素生产率和劳均产出均不存在绝对收敛,而只存在条件收敛;技术进步与技术效率的共同作用使全要素生产率的增长对服务业产出的收敛性贡献最大,是导致省区间服务业发展差距变化的主要原因。第七章,中国服务业全要素生产率影响因素分析。本章利用面板数据的变系数固定效应模型考察了中国各省区服务业全要素生产率的影响因素。结果发现,城市化水平、对外开放度和市场化进程对服务业全要素生产率提高有促进作用,而政府控制对其提高则有阻碍作用。由此得到的政策含义是从生产率方面着手缩小服务业发展的地区差异需要收到重视,下一轮应该在加大服务业市场化程度的改革和推进体制改革等方面做文章,比如打破垄断、引入竞争、释放活力、制定公平统一打破地区分割的发展政策,其中首要的是以政府自身的改革来换得市场的发展空间。本研究创新之处有以下几点:第一,针对传统DEA方法的不足,采用SBM超效率模型测算中国各省区服务业的技术效率,该方法不但考虑了投入与产出的松弛问题,还可实现对DEA有效决策单元的进一步区分和排序;将SBM超效率模型与Malmquist指数相结合测算了中国各省区服务业的全要素生产率增长及构成,使测度结果更加准确、科学。第二,运用多种统计方法(变异系数、相对发展率和Theil指数)检验了中国服务业地区发展差异,并通过实证分析(核密度估计、方差分解方法)手段验证服务业全要素生产率水平对服务业劳均产出的地区差异贡献越来越大,各种方法相互佐证,增强了结果的稳健性。第三,运用非参数分解框架考察技术效率改善、技术进步、人力资本增长效应和劳均资本积累增长效应这四部分对中国各省区服务业劳均产出增长及差异的影响,运用生产率收敛理论实证检验了全要素生产率的收敛性对服务业劳均产出收敛性的影响,得出全要素生产率增长是服务业产出地区差距变化的主要原因的结论。

【Abstract】 In the1980s, the world economy began to transform to the service economy, at present, theworld has entered the era of the service economy, service industries accounted for70%of globalGDP, and it has become the dominant force in leading global technology innovation and businessmodel innovation. At the support of national and the local policy, the service industries in ournation develop well generally. However, compared with developed countries and the whole world,the proportion of value added of service industries always hovers at40%, which is even lowerthan some less developed countries, and the regional imbalance of service industries in China hasbeen increasingly prominent, which has become a problem in keeping regional balance in China.According to the economic growth theory, factor accumulation and productivity are the two mainsources of output growth, subject to resource constraints, factor accumulation can not bringsustained growth, and only the productivity increasing is the inexhaustible motive force foreconomic growth. Well, examining the development and the regional differences in China’sservice industry from the viewpoint of TFP has become the purpose of this article.The article is an empirical research basing on the economic growth theory, services theory,and productivity theory and using the methods of statistics, econometrics and so on. The articleexamines the regional disparity of China’s service industry output and total factor productivity,researches the impact and contribution of service industry to the growth and regional disparity ofservice industry, analyses the factors of TFP of service industry. From a practical perspective,these analyses will provide an useful reference for promoting the service industry developmentpattern and imposing the coordinated development of regional service industry. Full sevenchapters, the main contents are as follows:Chapter1is the introduction of research background and review of related literature. Thischapter introduces the development trends of world service industry and the characteristics ofChina’s service industry; sorts out and reviews domestic and foreign relevant research,.Chapter2is the introduction of relevant theory, methods and data processing. The chapterdescribes the theories of service industry first, outlines the development context of serviceeconomy theory; then it introduces the methods of measuring TFP widely used in empiricalresearch such as Solow residual method, stochastic frontier analysis and data envelopment analysis and compares their advantages and disadvantages; finally it describes the samples, datasources and processing used later, the process of capital stock of service industry is accounted indetail.Chapter3is the measurement and analysis of the regional disparities of China’s serviceindustry. This chapter takes the output per worker of service industry as an object, inspects theregional differences of the output of China’s service industry and its long-term trends in1993-2010. The methods used in this chapter to measure regional disparities includes maximumand minimum ratio, coefficient of variation, Nich index and Theil index. The results show that thedevelopment gap of the output of regional service industry has the increasing trend.Chapter4is the calculation of the TFP growth and its composition of China’s serviceindustry. The main task of this chapter is to measure the technical efficiency as well as TFPgrowth and its composition of China’s service industry, the method is the combination of SBMsuper efficiency model and Malmquist index, SBM super efficiency model is developed on thebasis of non-parametric DEA model. The results show that: from1993to2010, the averageannual growth rate of TFP of China’s service industry is0.83%, the average annual growth rate oftechnological progress is2.4%, and that of technical efficiency is-1.5%, so technological processis the force for TFP growth of China’s service industry.Chapter5is the estimation of TFP level and the relationship between TFP level and regionaldisparities of output for China’s service industry. The paper uses Solow residual method tomeasure the TFP level of service industry of China’s provinces, on which basis, the papercompares the distribution of the TFP level and output of service industry using kernel densitydistribution, while also examines and analyses the impact of TFP level and inputs on the regionaldisparity of output of service industry using variance decomposition method. Results are that thecontribution of TFP level to the output gap of service industry increases gradually, it isforeseeable that TFP level will contribute more and more to the output gap of service industry, andbecome the major factor.Chapter6is the convergence test of TFP growth for China’s service industry. After reviewingsome literatures about convergence, the paper examines the convergence of provincial TFP ofservice industry and compares it with the mode of output convergence. To test the impact of TFPconvergence on the service output convergence, a non-parameter decomposition frame is drawedinto the paper decomposing the output growth into the effects of technical progress, technicalefficiency change, capital accumulation and humane capital. Next, the paper uses the Maudosmodel to estimate the contribution of TFP growth, humane capital and capital accumulation to theservice industry output convergence. The results show that the cross-country and three regionshave no absolute convergence in TFP and output, only exists conditional convergence; the divergence of TFP growth is the significant force of services output divergence under thecombined effect of technical progress and technical efficiency, which means the disparity of TFPgrowth has greater impact on the convergence of the service output.Chapter7examines some main influential factors on the provincial TFP of service industryusing the fixed effects model of variable coefficient panel data. The result shows that the level ofurbanization, the opening degree and the marketization process have positive impact on the TFPgrowth of service industry, on the contrary, the government control has negative impact on theTFP growth of service industry. So, the next step we should give impetus to the reform of servicemarketization and institution with a great effort, such as breaking the monopoly, introducing thecompetition, releasing the energy, and formulating the fair and uniform policy to break regionalsegmentation, undoubtedly, the first of which is based on the government’s own reform inexchange for market development.This study has the following innovations:First, for the deficiencies of traditional DEA method, the article uses SBM super efficiencymodel to estimate the technical efficiency of China’s service industry, the method can not onlytake into account the slack problems of inputs and outputs, but also achieve further differentiatingand sorting for the efficient DMU; the SBM super efficiency model is combined with Malmquistindex to measure TFP growth of China’s service industry, the results of which are more accurateand scientific. Second, a variety of statistical methods (such as coefficient of variation, Nich andTheil index)are used to examine the regional differences of the development of China’s serviceindustry, and empirical analyses(such as kernel density estimation and variance decompositionmethod) are used to verify the TFP level has more and more contribution to the regionaldifferences of the output of service industry, various ways support mutually which enhance therobustness of the results. Third, a non-parameter decomposition frame is drawed into the paperdecomposing the output growth into the effects of technical progress, technical efficiency change,capital accumulation and humane capital, and productivity convergence models are used toempirically test the impact of TFP convergence on the output convergence of service industry, theconclusion is TFP growth is the main reason for the change of regional disparities of serviceindustry output.

  • 【网络出版投稿人】 吉林大学
  • 【网络出版年期】2014年 05期
  • 【分类号】F222.33;F719
  • 【被引频次】39
  • 【下载频次】4800
  • 攻读期成果
节点文献中: