节点文献
五轴车铣复合加工功能关键技术的研究
Research on Key Technologies in Five-axis Turn-mill Complex Machining
【作者】 刘峰;
【导师】 林浒;
【作者基本信息】 中国科学院研究生院(沈阳计算技术研究所) , 计算机应用技术, 2014, 博士
【摘要】 多轴车铣复合加工技术作为一种适应现代化制造业多品种、小批量、个性化发展需求的新技术,是一种在传统机械设计和精密制造技术基础上,集成了现代先进控制技术、精密测量技术和CAD/CAM应用技术的先进机械加工技术。在“高档数控机床与基础制造装备”国家科技重大专项中,也将其列为数控系统重点任务中的重要研究内容。针对多轴车铣复合加工控制功能需求,开展高档数控系统车铣复合加工动态转换功能、五轴机床运动学库、五轴运动学校验和优化等关键技术的研究。围绕上述问题,本报告开展的研究工作如下:1.车铣复合端面加工坐标转换方法的研究。针对车铣复合端面加工复杂运动学转换的问题,在研究车铣复合端面加工工艺特点及相应机床运动学关系基础上,提出一种基于模块化机床数据的车铣复合端面加工动态转换方法,实现了笛卡尔坐标系刀具运动轨迹与机床坐标系间的极坐标运动动态转换,并在现有的运动轨迹规划方法基础上,在实时插补中完成动态转换,实现了数控系统车铣复合极坐标加工功能。针对极坐标插补极值区域的C轴运动过载问题,提供一种结合C轴约束系数α和过渡系数β的数控系统用极坐标插补极值区域平滑处理方法,实现极坐标插补区域内路径平滑插补。保证编程方式与铣削加工编程方式一致,给用户编程带来方便,提高加工效率,同时丰富车削中心的功能。2.车铣复合柱面加工坐标转换方法的研究。针对车铣复合柱面加工复杂运动学转换的问题,在研究车铣复合柱面加工工艺特点及相应机床运动学关系基础上,提出一种基于模块化机床数据的车铣复合柱面加工动态转换方法,实现了笛卡尔坐标系刀具运动轨迹与机床圆柱坐标系间的圆柱坐标运动动态转换,并在现有的运动轨迹规划方法基础上,在实时插补中完成动态转换,实现了数控系统车铣复合圆柱加工功能。针对使用XZCY结构将圆柱展开面作为编程平面进行圆柱插补开槽编程时,槽的界面与展开面恰好垂直。但当用小于槽直径的铣刀进行平底开槽刀具半径补偿加工时,则截面内的刀具半径补偿量会发生变化。通过将半径补偿转化为一个长度补偿和一个展开面内的横向半径补偿,并引入辅助的线性Y轴的补偿运动,对圆周方向发生的补偿矢量变化进行线性位移补偿,保证槽壁垂直于槽底面,而与使用的刀具半径无关。3.基于进给率约束的五轴刀心点插补控制方法的研究。多轴加工刀具中心点控制使用户可以直接根据工件外形和期望的刀具角度来编程刀具中心轨迹,CNC系统将会自动对控制点进行实时补偿,从而可以确保刀具中心点位于编程轨迹上而与加工时所用刀具和机床类型无关。但是因旋转的原因,刀具中心点的运动与实际机床轴的运动存在非线性关系,在运动控制器中无法同时对刀心点和机床轴进行运动控制。针对此问题,在现有五轴运动控制基础上,基于编程进给率分别在运动命令队列和运动插补队列内完成实时运动学转换,来实现插补前和插补后的实时运动学补偿运动,来实现适用于高速模式和高质量模式的五轴刀心点插补控制。4.基于轴分组的多轴复合机床校验方法的研究。首先为了高效快捷的完成五轴机床RTCP参数的校验和优化,在五轴运动学库基础上,以ISO230国际标准为误差测量标准,通过对在线测量出的刀具中心点位置进行回归分析,自动计算出各旋转轴方向矢量和旋转中心位置矢量,从而完成五轴RTCP功能参数的校对,高效的完成五轴机床摆头误差补偿,降低了五轴机床的调试难度,提高RTCP的加工精度。然后在五轴校验基础上,针对多轴车铣复合机床HTM63150iy的插补轴组成特点,将多轴车铣复合机床划分为并将多轴复合机床划分为XYZBC1、XYZBC2、XYZAB(C1&C2)等五轴机床的运动组合。针对划分的各运动组合,分别进行相应的多轴机床结构误差的简化测量。最后通过数控系统相关功能参数对结构误差进行补偿,从而有效的降低成本并使加工精度得到保证。
【Abstract】 Multi-axis turn-mill complex machining technology is a kind of advancedprocessing technology integrates modern advanced control technology, precisionmeasurement technology and CAD/CAM application technology based on traditionalmechanical design and precision manufacturing technology, as a new technology foradapting to modern manufacturing industry needs, more varieties, small quantity andindividuation development. It’s also included as one of the key tasks in CNC importantresearch in the national science and technology major projects of "High-End CNCMachine Tools and basic manufacturing equipment". For multi-axis turn-mill complexmachining control function requirementsto carry out research of high-end CNCmilling machining dynamic conversion function, five-axis machine tool kinematicslibrary, five-axis kinematics calibration and optimization of key technologies. The maincontributions of this dissertation are summarized as follows:1. Research on peripheral surface transformation for turn-mill complex end surface.For the problem of turn-mill complex machining complex kinematics transformation,proposed an approach based on modular machine tool data parameters dynamicconversion method on the basis of researching the face end machining processingcharacteristics and corresponding kinematic relationship to achieve polar coordinatemotion dynamic transformation between the Cartesian coordinate system and themachine tool polar coordinate system. Based on the existing motion trajectory planningmethod, dynamic conversion is completed in real-time interpolation to achieve turn-millcomplex polar coordinates machining functions. For C-axis motion overload problem inpolar coordinate interpolation extreme regional, provide polar coordinate interpolation smoothing process method in extreme regional based on the CNC system of C-axisconstraint coefficient α and transition coefficient β to achieve the smoothing pathinterpolation within the polar coordinate interpolation region. Resolved simplifyprogramming, improve processing efficiency.2. Research on cylinder surface transformation for the machining of cylinder jacketcurves. For the problem of turn-mill complex machining complex cylinders kinematicstransformation problems, proposed an approach based on modular machine tool dataparameters dynamic transformation method on the basis of researching the cylindermachining processing characteristics and corresponding kinematic relationship toachieve cylindrical coordinate motion dynamic transformation between the Cartesiancoordinate system and the machine tool cylindrical coordinate system. Based on theexisting motion trajectory planning method, dynamic transformation is completed inreal-time interpolation to achieve turn-mill complex cylindrical machining functions.Using structure XZCY expanded the cylindrical surface as the programming plane toslot cylindrical interpolation programming, interface and expanded surface of the slotvertical exactly. But with the cutter less than the diameter of slot processing flat slottingtool radius compensation, then the tool radius compensation amount in cross sectionwill be changed. By converting radius compensation into length compensation andlateral radius compensational in expanded plane and the introduction of auxiliary Y-axismotion compensation, linear displacement compensate compensation vector change inthe circumferential direction, ensure the wall perpendicular to the bottom surface of theslot, and nothing to do with the using the tool radius.3. Research on five-axis tool center point interpolation control method based on feed rate constraint. According to the tool shape and the desired tool angle, Multi-axismachining tool center point control allows user to directly program tool center path.CNC system will compensate for control point automatically in real time. Which canensure that the tool center is located in programming track, which is independent ofthe used tools or machine type. However, because of the rotary motion, between themovement of the tool center point and the actual machine axis exists non-linearrelationship, it is very difficult to control the movement of tool center point andmachine axis simultaneously in the motion controller. To solve this problem, completedthe real-time kinematic conversion within queues motion command and motioninterpolation queues based on the programmed feed rate according to the existingfive-axis motion control, to achieve real-time kinematic compensation before or afterinterpolation, and interpolation control method for high-speed mode and high qualitymode.4. Research on multi-axis machine tool calibration method based on complexgrouping of axes. First, in order completed verification and optimization of five-axismachine RTCP parameters fast and efficiently, automatically calculated for eachrotation axis direction vector and the position vector of the center of rotation byanalysing the tool center point position from online measured with regression analysis,based on the five-axis kinematics library and ISO230international standard to proofreadfive-axis RTCP function parameters and compensate errors of machine structure,reduce the difficulty of five-axis machine debugging and improve the RTCP machiningprecision. Second, according to composition characteristics of multi-axis turn-millcomplex machine HTM63150iy interpolation axis, combination of five-axis machine tools such as XYZ BC1, XYZ BC2, XYZAB(C1&C2)are divided. For eachcombination of the divided, the corresponding errors of multi-axis machine structure aremeasured simply. Finally, by structure error compensation for CNC system relatedfunction parameters to reduce cost and ensure precision effectively.
【Key words】 Turn-Mill complex machining; Five-axis machining; Kinematicstransformation; Motion control;
- 【网络出版投稿人】 中国科学院研究生院(沈阳计算技术研究所) 【网络出版年期】2014年 11期
- 【分类号】TG65
- 【下载频次】781
- 攻读期成果