节点文献

高温超导磁储能磁体电磁热力综合设计

Electromagnetic, Thermal and Mechanical Design of High Temperature Superconducting Energy Storage Magnet

【作者】 焦丰顺

【导师】 唐跃进;

【作者基本信息】 华中科技大学 , 电力系统及其自动化, 2013, 博士

【摘要】 如今超导磁体技术在医疗、交通、能源、军事、科学研究等领域正发挥着不可替代的作用。在电力系统中,大功率有功、无功调节和大规模储能的需求共同推动了超导磁储能技术的发展。高温超导材料的使用,更是大幅提高超导磁储能系统的性能。作为系统中最为核心的部件,储能磁体是超导磁体的典型代表,其设计需要综合应用电磁、低温、力学等多个领域的关键技术。本文针对高温超导磁储能磁体的电磁热力综合设计方法进行了研究,主要完成了如下工作:1.测量并总结了主流新型带材的电磁各向异性、临界电流-温度特性和临界应力/应变特性,以此为依据,制定了不同型号超导带材在磁体设计中的使用规则,提出通过构建混合磁体提高磁体储能量的方法。2.提出了高温超导磁体多物理场解耦和耦合分析的一般思路,即以电磁设计为核心,以磁场计算结果为纽带,以危险区域为主要优化对象的电磁热力综合分析。3.在超导磁体电磁设计中,提出并通过实验验证了一种新的超导磁体临界电流计算方法——“磁场矢量分析法”。基于这种方法完成了150kJ/100kW高温超导磁储能混合磁体的概念设计4.在低温系统设计中,讨论了超导磁体的主要热负荷及抑制方式,完成了150kJ/100kW高温超导磁储能磁体低温系统的概念设计;提出了超导磁体储能稳定性的分析方法,并用这种方法对150kJ/100kW超导磁储能方案在极限工况和低负荷工况下的稳定性进行了分析。5.在超导磁体力学计算中,分析了热应力对于超导磁体加工及运行的影响,提出了超导磁体加工工艺的指导建议;分别采用应变法和应力法对150kJ/100kW超导磁储能磁体方案的结构稳定性进行了分析,确定了磁体最易受损的危险区域。

【Abstract】 In nowdays, superconducting magnet technology plays an irreplaceable role in healthcare, transportation, energy, military, frontier science and technology and other fields. Inthe power system, the demands for high-power active and reactive power regulation andlarge-scale energy storage promote the development of superconducting magnetic energystorage (SMES) technology while the use of high-temperature superconducting materialsisimprove the performance of SMES system significantly. As the most central parts of thesystem, the SMES magnet is a typical representative of the superconducting magnet; itsdesign requires a comprehensive application of key technologies of electromagnetic,low-temperature, mechanical and other fields.Focusing on electromagnetic, thermal and mechanical design method forhigh-temperature SMES magnets, this articl mainly completes the following tasks:1. Measured and summed up electromagnetic anisotropy, critical current-temperaturecharacteristics and critical stress/strain characteristics of the mainstream typeo ofhigh-temperature superconducting (HTS) tapes, according to which, rules of employingdifferent types of HTS tapes in design of magnet are maked and method of improvingmagnets storage energy by constructing hybrid magnes is proposed.2. Proposed a general idea of decoupled and coupled analysis of multi-physics of HTSmagnet, which is a comprehensive optimization method with electromagnetic design ascore content, the magnetic field data as link and danger zones as main improvements.3. In electromagnetic design of the superconducting magnet part, a newsuperconducting magnet critical current calculation method–“magnetic field vectoranalysis method” is proposed and verified by experiment.4. In cryogenic system design part, Main types of heat load and its suppression methodof the superconducting magnet are discussed and the conceptual design of150kJ/100kWhigh-temperature SMES magnet cryogenic system is completed. A method of analysis ofthe thermal stability of the superconducting magnetis is proposed, What is more, stability ofthe150kJ/100kW SMES scheme in extreme conditions and low load conditions areanalysed with this method. 5. In superconducting magnet mechanical calculations part, impact of thermal stress onprocessing and operation of superconducting magnet is analysed, superconductingmagnets process guidance is recommended; strain method and stress method are emloyedon the structural stability analysis of the150kJ/100kW SMES magnet scheme todetermine the danger zone of the magnets which are the most easily damaged.

节点文献中: