节点文献

分布式电驱动车辆纵横向运动综合控制

Integrated Longitudinal and Lateral Motion Control of Distributed Electric Vehicles

【作者】 戴一凡

【导师】 李克强;

【作者基本信息】 清华大学 , 机械工程, 2013, 博士

【摘要】 车辆在道路上的行驶状态可分为纵向运动与横向运动。纵横向运动综合控制技术能够通过协调纵向的驱动/制动系统与横向的转向系统,综合提高车辆行驶过程中的操纵稳定性及经济性等性能。目前对纵横向运动综合控制技术的研究主要聚焦于常规内燃机车辆和集中式电驱动车辆。针对现有分布式电驱动车辆纵横向运动综合控制研究中存在的控制体系不够完善、车辆状态估计算法准确性与鲁棒性不高、纵横向力分配算法优化目标单一、轮胎逆模型计算精度较低等问题,本文以装备有前轮主动转向系统的分布式电驱动车辆为研究对象,建立了以提高车辆操纵稳定性与经济性为目标的分布式电驱动车辆纵横向运动综合控制系统,并对其中涉及的车辆状态估计、纵横向力分配、纵横向力控制等相关问题开展了研究。为满足纵横向运动综合控制系统对车辆状态信息的需求,建立状态观测器,对纵向车速及质心侧偏角等难以直接测量的车辆关键状态参数进行估计。结合全球卫星定位系统(GPS)与惯性导航传感器(INS)的测量信息,并通过融合运动学与动力学状态估计方法,得到实时准确的纵向车速和质心侧偏角估计结果。为实现各子控制系统的控制目标分配,建立上位控制器,对四轮纵向力及前轮横向力进行优化分配。分别基于轮胎负荷率优化和耗散能优化的方法对各轮纵横向力进行分配,并设计了两种优化目标的动态调节方法,以综合提高车辆操纵稳定性和经济性。为实现对各子控制系统的控制,建立下位控制器,控制轮胎纵向及横向力达到目标值。通过轮胎逆模型将纵向力与横向力控制目标转换为更易观测及控制的轮胎滑移率与侧偏角控制目标,并可实现纵横向力间的解耦。分别建立应用滑模算法的滑移率控制器和基于前馈与反馈组合的侧偏角控制器以实现对轮胎滑移率及侧偏角的控制。为验证所提出的分布式电驱动车辆纵横向运动综合控制系统的有效性,基于搭建的仿真与实车实验平台对涉及的各项关键技术及整体控制系统进行了多工况验证。仿真及实验结果表明所提出的纵横向运动综合控制系统能够有效的提高分布式电驱动车辆的操纵稳定性及经济性。

【Abstract】 The movement of vehicle on the road can be divided into longitudinal motion andlateral motion. Integrated longitudinal and lateral motion control system can improvethe vehicle handling stability and energy efficiency by controlling the drive/brakesystem and the active steering system. The existing researches mainly focus on theconventional ICE (Internal Combustion Engine) vehicles and centralized EV (ElectricVehicles). For the integrated longitudinal and lateral motion control of distributed EV,there are some problems in the existing researches, such as the control system isincomplete, the accuracy and robustness of the vehicle state estimation is not highenough, the performance index of tire force distribution is not optimal, and the accuracyof inverse tire model is limited. Considering these problems, for the distributed EVequipped with active front steering system, an integrated longitudinal and lateral motioncontrol system is proposed in order to improve the handling stability and energyefficiency. The key technologies, including vehicle state estimation, optimum tire forcedistribution and tire force control, are studied in this dissertation.The state estimator is established in order to estimate some key vehicle stateswhich are hard to measure directly, such as longitudinal velocity and vehicle sideslipangle. Combining the signals from GPS and INS, and integrating the kinematic anddynamic estimation method, real-time and accurate estimation result of longitudinalvelocity and vehicle sideslip angle can be obtained.The upper controller is used for the tire force distribution. Longitudinal and lateraltire forces are allocated based on the optimization of tire workload and tire energydissipation respectively. A dynamic regulation method between these two performanceindexes is proposed in order to improve the vehicle handling stability and energyefficiency.The lower controller is built for the tire force control. The desired tire forces aretransformed to tire slip ratio and sideslip angle, which are easier to measure and control.Meanwhile, the longitudinal force and lateral force are decoupled. A sliding modecontroller and a feedforward/feedback combined controller are established for thecontrol of the tire slip ratio and sideslip angle respectively.To verify the effectiveness of the integrated longitudinal and lateral motion control system of distributed EV, simulation and field test in different operating conditions arecarried out. The simulation and field test results show that the coordinated controlsystem can improve the vehicle handling stability and energy efficiency effectively.

  • 【网络出版投稿人】 清华大学
  • 【网络出版年期】2014年 07期
  • 【分类号】U469.72;U463.6
  • 【被引频次】2
  • 【下载频次】485
  • 攻读期成果
节点文献中: