节点文献
宇宙线测试平台研制与核碰撞中涨落现象研究
A Common Platform Based on Cosmic Ray and Fluctuation Phenomena in Nuclear Collisions
【作者】 吕绮雯;
【导师】 刘福虎;
【作者基本信息】 山西大学 , 粒子物理与原子核物理, 2012, 博士
【摘要】 核物理与粒子物理是研究物质基本结构的科学,这种研究是通过实验现象、实验数据、模拟计算和理论模型来对物质之间的相互作用和基本规律进行认识而实现的。实验中,根据不同粒子与物质的相互作用机制,人们设计了各种不同的探测器,研究物质与射线通过相互作用后产生的粒子的能量、动量、运动轨迹、带电的电性等性质,从而揭示物质的基本结构。高能物理界在建造加速器的同时,也建造了复杂的、大型的探测器系统(即谱仪),对粒子打靶和对撞产生的末态粒子进行探测研究。未来新探测器技术的开发以及研究,对于粒子物理学的持续发展具有重大的意义。本文的研究内容主要分为两部分,从第一章到第五章是作者对高能探测器的设计、制作、测量和数据分析的研究,第六章是理论模型方面的研究。第一、二和三章,介绍了宇宙线通用测试平台的研究。第一章是测试平台的设计背景,以及设计方案和原理。第二章主要利用宇宙线和采用有像增强功能的电荷耦合器件(ICCD)相机并行读出定位,测量了时间探测器的时间分辨。实验结果表明,时间探测器可以达到起始时间精度好于200ps,满足通用探测器测试平台的设计要求。第三章研究了测试平台的定位探测器电阻性极板室(RPC)的读出系统,根据实验测量数据,提出使用一个新型读出系统方案:激光器加ICCD读出,并对该方法进行了可行性研究,实验结果表明RPC工作在流光模式下,可以使小激光器发光。本文第四章对新型厚气体电子倍增器(THGEM)进行研究。介绍了THGEM探测器的工作原理,国产化生产的THGEM的结构特点以及制作步骤,重点研究了大面积THGEM (10x10cm2和20×20cm2)的工作性能,介绍了应用情况。本文第五章对CsI (Na)晶体探测Cherenkov光,进而用于粒子鉴别的可行性进行了初步研究。结果表明,CsI (Na)晶体在一定条件下可以探测到粒子的Cherenkov光。本文第六章研究了多源热模型,利用该模型分析了中高能强子-核(hA)及核-核(AA)碰撞中产生的末态核碎片的多重数分布,高能AA碰撞中一些其他整体观测量的逐事例涨落,以及低能重离子反应中轻带电粒子和蒸发余核的能谱。该模型能够很好地描述相关实验数据,这意味着,核碰撞中除了种类繁多的个性特征外,还蕴含着更基本的共性规律。
【Abstract】 Nuclear physics and particle physics are subjects to research into the structure of matter. The research is through the experimental phenomena, the experiment data, the simulation calculation and theoretical model to study the material interactions and the most basic rules. According to the interactions between different particles and the materials, the physicists design different detectors to research the final-particles generated from interactions between material and ray, and get the final-particles energy, momentum, track, charge and so on. The high-energy physicists not only build the accelerators, but also build complex and large detector systems (spectrometers), to research the final-particles in fixed-target and collider experiments. So the new detector technology research for particle physics development is great significance.This thesis contains mainly two parts. The first part includes chapters1-5which investigate high-energy detectors including the design, manufacture, measurement, and data analysis. The second part includes chapter6which presents a modeling work.The first three chapters introduce the study of the common platform based on cosmic ray. The first chapter gives the background, principle, and design of the platform. The second chapter presents the time resolution of a Time-Of-Fly detector by using cosmic ray and the Intensified Charge-Coupled Device (ICCD) camera. It is shown that the time resolution of the Time-Of-Fly detector is better than200ps which meet the requirement of the platform. In the third chapter, the read out system of the Resistive Plate Chamber (RPC) detector is studied. According to the experimental data, a new solution method, laser and ICCD, is suggested. From the result we know that the RPC signal can make laser lighting and the solution is feasible.In the fourth chapter, a new detector, Thick Gaseous Electron Multipliers (THGEM), is investigated on its working principle, localization of structural characteristics, and production process. We focus our attention on the performances of two large-area THGEMs with sizes of10×10cm2and20×20cm2respectively. In the fifth chapter, a study is made to detect the Cherenkov ray by using CsI (Na), and this method can be used for particle identification. The results show that Csl (Na) can detect the Cherenkov ray.In the sixth chapter, the multiplicity distributions of nuclear fragments in hadron-nucleus (hA) and nucleus-nucleus (AA) collisions at intermediate and high energies, the event-by-event fluctuations in some global observables in AA collisions at high energies, and the energy spectra of light charged particles and evaporation residues in heavy ion induced reactions at low energies are investigateds by using the multisource thermal model. The modeling results are in agreement with the experimental data. This indicates that, except for special characteristics, common laws exist usually in nuclear collisions.
【Key words】 Cosmic ray; RPC detector; Scintillator; Multisourcethermal model; Multiplicity distribution;