节点文献

一维ZnO纳米复合结构的生长及其物性研究

Growth and Physical Properties of One-dimensional ZnO Composite Nanostructures

【作者】 汤洋

【导师】 申德振; 赵东旭;

【作者基本信息】 中国科学院研究生院(长春光学精密机械与物理研究所) , 凝聚态物理, 2011, 博士

【摘要】 ZnO是一种宽禁带的半导体材料,具有多种多样的一维纳米结构,并且这些纳米结构基本上都是单晶,比起其薄膜结构具有更低的缺陷。由于具有这些特点,一维ZnO纳米结构成为构筑纳米光电器件的结构单元,显示出广阔的应用前景。本论文主要针对一维ZnO纳米结构在构造纳米光电器件过程中,纳米线与纳米线之间的接触控制,纳米线顶端电极的制备,以及电化学生长ZnO纳米柱异质结等问题开展了研究工作,并取得如下结果:(1)采用低温电化学沉积方法在p型Si和GaN衬底上生长出高质量ZnO纳米柱阵列;使用气相输运方法得到了无衬底的ZnO纳米线阵列。(2)利用水的毛细力作用,实现了相邻ZnO纳米线的连接;并观测到ZnO纳米线具有良好的柔性,其弯曲角度接近直角。(3)利用纳米柱顶端曲率半径小,顶端电势比表面电势高的特点,通过采用电化学方法实现了ZnO纳米柱上Ni纳米团簇的可控生长。研究发现在低电位下Ni纳米团簇生长在纳米柱的顶端;而在高电位下, Ni纳米团簇包覆ZnO纳米柱表面,形成Ni/ZnO核-壳结构。(4)采用电化学方法制备了n-ZnO纳米柱/p-CuSCN异质结,获得了典型的二极管I-V曲线。并通过改变生长参数,首次生长出CuSCN的微米柱阵列,实现了微米柱阵列的可控生长。

【Abstract】 As a wide band gap semiconductor, single-crystal one-dimensional (1D) ZnO nanostructures with various morphologies exhibit fewer defects than their thin-film structure. Because of these merits, one-dimensional (1D) ZnO nanostructures have served as the building blocks for potential applications in optoelectronic devices and show good prospects. This paper presents the study of the link between nanowires, deposition of electrodes on ZnO nanorods and ZnO nanorod based heterojunctions, etc. The results are outlined as follows.(1) The controllable growth of high quality ZnO nanorod arrays on p-Si and p-GaN by electrodeposition. The stand-alone ZnO nanorod arrays were fabricated by a vapor transport method.(2) The adjacent ZnO nanowires were linked under capillary force. The extremely flexible ZnO nanowire could almost bend into an orthogonal shape.(3) The controllable growth of Ni nanoclusters on ZnO nanorods was provided. Due to the difference of the electric potential distribution on nanorod’s top and side surfaces, Ni-end-capped ZnO nanorods were obtained under a low applied potential and Ni/ ZnO nanorod core-shell structures were synthesized under a high applied potential.(4) The n-ZnO nanorods/p-CuSCN heterojunction was fabricated and the electrical behavior was analyzed. It was the first time to grow the CuSCN microrod arrays and the morphology of the microrods are controllable.

节点文献中: