节点文献

汽车空气悬架及其控制系统动力学仿真分析研究

Research on the Modeling and Dynamic Simulation of the Air Suspension and Its Control System

【作者】 鲍卫宁

【导师】 陈立平; 张云清;

【作者基本信息】 华中科技大学 , 机械设计及理论, 2011, 博士

【摘要】 对装备空气悬架的车辆进行动力学分析时,一般把空气弹簧处理为一系列线性弹簧组合,车辆系统的多体动力学仿真模型不能真实反映非线性参数对车辆动力学影响,不可避免导致动力学仿真分析存在偏差;由于空气悬架存在复杂的“机一电—气—液—控耦合”问题,系统存在强非线性、外部扰动、参数时变等因素的影响,采用常规控制算法,难以满足悬架不断提高的性能要求;由于空气悬架具有强非线性,建立准确的数学模型不易,控制系统开发和系统动力学分析较为困难。因此,建立准确有效的能反映空气悬架的动力学特性的仿真模型对于提高空气悬架研究水平和自主研发能力有着十分重要的学术意义和工程应用价值。本课题受国家“863”高技术研究发展计划“多领域物理系统混合建模与仿真平台开发及其在汽车工程中的应用”(2003AA001031)、国家自然科学基金“复杂系统建模与仿真中的多领域约束融合原理研究”(60574053)、国家自然科学基金“车—路耦合作用下智能悬架系统的多领域统一建模”(60674067)、湖北省教育厅”半主动空气悬架控制策略及其动力学仿真分析研究”(D200634002)、湖北省科技厅“城市大客车空气悬架系统研发平台支撑技术研究”(2007AA101C14)、武汉市科学技术局“WG6111EH城市大客车空气悬架系统研制”(200710321089)项目支持,与东风扬子江客车(武汉)有限责任公司通过产、学、研合作,共同开发出低地板城市大客车空气悬架系统,整车完成了产品定型试验和的性能试验。本论文针对空气悬架非线性的具体问题,重点研究了空气悬架及其控制系统模型建立、动力学分析、仿真和试验研究,研究旨在为空气悬架及其控制系统分析、设计和开发提供套准确有效的仿真平台。本文的主要工作包括:首先,为了提供准确空气弹簧系统,本文基于流体力学、热力学等方面理论,结合国内外相关的研究结论,建立了包含空气弹簧带附加气室、高度阀和连接管路的空气弹簧系统动力学的Matlab/Simulink数值分析模型,该模型能充分反映空气弹簧非线性特性以及与相互连通和相互作用的空气弹簧系统的动态特性,可用于控制系统开发和整车动力学仿真;其次,应用有限元分析方法对空气弹簧刚度特性和各参数对性能的影响进行了分析。该方法详细考虑了空气弹簧的接触非线性特性,能够准确反应活塞与气囊的接触压力,并可据此来判断气囊在整个工作行程中是否漏气,为空气弹簧设计和悬架匹配提供了可靠的理论依据;再次,以改善悬架性能和提高控制系统实时性和鲁棒性的目标,提出了一种以动态滑模为基础应用于空气悬架的控制方法,以模糊自适应系统来调节其参数,实现空气悬架的主动控制,并以dSPACE仿真机为基础,建立了半实物仿真实验平台,并验证了所提出的算法的有效性与可行性;最后,为了方便分析空气悬架的“机-电-气—液-控”系统特性,本文采用ADAMS及Matlab/Simulink对空气悬架车辆进行建模,建立了嵌入模块化空气弹簧系统的车辆多体动力学模型,进行了汽车运行各工况的仿真分析研究,试验与仿真的结果对比,验证了本文建立的整车空气悬架的动力学模型尤其是非线性空气弹簧模型的正确性和控制系统有效性。

【Abstract】 When the dynamic is analysis for the vehicle used air suspension, generally, the airsprings is substitute by a series of linear air spring in the multi-body vehicle dynamics simulation model,so that it can’t describe the impact of nonlinear parameters on vehicle dynamics, the accuracy of vehicle analysis inevitably is poor; on account of the problem that there is a complex "machine-electric-gas-liquid-control coupling" in air suspension system, the dynamic system has strong nonlinearity, external disturbances, time varying parameters and other factors, strongly nonlinear due to air suspension, establish an accurate mathematical model is not easy for control system, the conventional control algorithms application cannot meet the increasing performance requirements of suspension,so the air suspension development and vehicle dynamics is difficult. So the research on the dynamic model that can accurately and effectively reflect the characteristics of sir suspension has important theoretical significance and important practical value in Automotive Engineering.This work is supported by the National "863" High-Tech Development Project of China under the grant No.2003AA001031 and national natural science foundation of China under the grant No.60674067 and 60574053, and the Education Department of Hubei Province Research Project under the grant No D200634002,and Hubei Science and Technology Department Research Project under the grant No 2007AA101C14, and Wuhan Science and Technology Bureau Research Project under the grant No 200710321089, and by "industry- academia-research" cooperation, the low-floor city bus equipped with the independent exploitation air suspension is manufactured by Dongfeng Yangtze Bus (Wuhan) Co., Ltd, and the vehicle performance test is completed in National Automobile Quality Supervision Test Center. Based on the air suspension development, the air springs design theory and method, and the air suspension vehicle characteristics and experimental research are studied in the dissertation, The major work can be summarized as follows:Firstly, in order to provide a more precise air springs analysis model, based on fluid mechanics, thermodynamics and other theories, and the research about air spring at home and abroad, the coupling modular air springs numerical analysis model is presented by Matlab/Simulink, and its characteristics are detailedly discussed in the paper.Secondly, the stiffness and the dynamic characteristics of air spring are analyzed based on the Finite Element Theory, and the influences such as the various of Structural parameters and the contact of rubber and piston is discussed in the paper.Thirdly, in order to improve the performance of the air suspension, the Sliding Fuzzy adaptive Control for active control is proposed in this paper, the hardware-in-the-loop simulation of air suspension based on the dSPACE is designed to demonstrate the performance of the Sliding Fuzzy adaptive Control,the simulation and experimental results show the better performance and better robust and robust stability by adopting the proposed controllers.Finally, in order to analysis the performance of the air suspension, a accurate and effective simulation has been proposed based on ADAMS and Matlab software.the multi-body dynamics simulation model obtained the coupling modular air springs numerical analysis model, through the comparison between combined simulation results and test data under different, the mathematical model is proved to be more accurate and more effective by adopting the proposed air suspension dynamic model.

节点文献中: